
PARALLELIZATION OF POPULATION�BASED EVOLUTIONARY

ALGORITHMS FOR COMBINATORIAL OPTIMIZATION PROBLEMS

TH�ESE No ���� ��			

PR�ESENT�EE AU D�EPARTEMENT D�INFORMATIQUE

�ECOLE POLYTECHNIQUE F�ED�ERALE DE LAUSANNE

POUR L�OBTENTION DU GRADE DE DOCTEUR �ES SCIENCES

PAR

Patrice Roger CAL�EGARI
Magist�ere en informatique et mod�elisation� DEA d�informatique fondamentale� Universit�e Claude Bernard� Lyon� France

de nationalit�e fran�caise

accept�ee sur proposition du jury �

Prof� G� Coray� directeur de th�ese

Prof� M� Cosnard� rapporteur

Prof� A� Hertz� rapporteur

Prof� D� Mange� rapporteur

Prof� D� Trystram� rapporteur

J��F� Wagen� rapporteur

Lausanne� EPFL

	

i

To my parents

ii

Abstract

The objective of the present work is to make e�cient parallelization of evolutionary algo�
rithms �EA� easier in order to solve large instances of di�cult combinatorial optimization
problems within an acceptable amount of time� on parallel computer architectures�

No known technique allows one to exactly solve within an acceptable amount of time�
such di�cult combinatorial optimization problems �NP�complete�� Moreover� traditional
heuristics that are used to �nd sub�optimal solutions are not always satisfactory since they
are easily attracted by local optima� Evolutionary algorithms �EA�� that are heuristics
inspired by natural evolution mechanisms� explore di	erent regions of the search space
concurrently� They are thus rarely trapped in a local optimum and are well suited to
treat di�cult combinatorial optimization problems� Their behavior can be improved by
hybridizing �i�e�� combining� them with other heuristics �EA or not�� Unfortunately� they
are greedy in computation power and memory space� It is thus interesting to parallelize
them� Indeed� the use of parallel computers �with dozens of processors� can speed up
the execution of EAs and provides the large memory space they require� It is possible
to take bene�t of the intrinsic parallelism of EAs �e�g�� for the concurrent exploration of
the search space� in order to design e�cient parallel implementations� However each EA
has its own characteristics and therefore a general rule cannot be de�ned�

This thesis starts with a description of the state of the art in which the di	erent exist�
ing approaches and terminologies are outlined� The fundamental ingredients of EAs are
then detailed and these ingredients are grouped by a classi�cation tool called TEA �Table
of Evolutionary Algorithms�� This table is taken as a basis for the analysis of the criteria
that in
uence the parallelization of EAs in order to de�ne parallelization rules� The anal�
ysis considers especially the implementation of hybrid EAs on MIMD�DM� architectures�
A notation of the granularity of parallel EAs is proposed� Further to this analysis� an
object�oriented library named APPEAL �Advanced Parallel Population�based Evolution�
ary Algorithm Library� that applies the parallelization rules is designed and then used
in order to experimentally validate these rules� During the experiments� di	erent hybrid
EAs are executed on a network of workstations in order to treat two problems� �rst the
optimization of the best set of transceiver sites in a mobile radio network and second the
classical graph coloring problem� Finally� a comparison of results and a discussion about
future work conclude this thesis�

Key words� parallel computing� evolutionary algorithms� combinatorial optimization�
taxonomy� object�oriented library� transceiver siting� graph coloring�

�MIMD�DM stands for Multiple Instruction stream� Multiple Data stream� Distributed Memory�

iii

iv

Version abr�eg�ee

Le but de ce travail de th�ese est de faciliter la parall
elisation e�cace des algorithmes
d�
evolution �e�g�� les algorithmes g
en
etiques� les syst�emes de fourmis� etc�� a�n de
r
esoudre� en un temps acceptable� de grosses instances de probl�emes d�optimisation com�
binatoire dif�ciles sur des architectures parall�eles�

Aucune technique connue ne permet de r
esoudre� en un temps acceptable et de fa�con
exacte� les grosses instances des probl�emes d�optimisation combinatoire NP�complets
�aussi appel
es �di�ciles��� De plus� les heuristiques traditionnelles qui sont utilis
ees
pour trouver des solutions approch
ees ne donnent pas toujours satisfaction car elles sont
facilement attir
ees par les optima locaux� Les algorithmes d�
evolution �AE�� qui sont des
heuristiques inspir
ees par l�
evolution des syst�emes biologiques� explorent simultan
ement
di	
erentes r
egions de l�espace de recherche� Ils sont donc peu sensibles �a l�attraction d�un
optimum local et conviennent bien pour r
esoudre des probl�emes d�optimisation combina�
toire di�ciles� Leur comportement peut �etre am
elior
e en les hybridant �i�e�� en les com�
binant� entre eux ou avec d�autres heuristiques� Malheureusement� ils sont gourmands
en temps de calcul et en espace m
emoire et il est donc int
eressant de les parall
eliser� En
e	et l�utilisation d�ordinateurs parall�eles �comprenant des dizaines de processeurs� peut
permettre d�acc
el
erer leur ex
ecution et de fournir l�espace m
emoire important dont ils ont
besoin� Il est possible de tirer pro�t du parall
elisme intrins�eque des AE �e�g�� la recherche
simultan
ee de plusieurs solutions� pour en concevoir des impl
ementations parall�eles e��
caces� toutefois chaque AE poss�ede ses propres caract
eristiques et une r�egle g
en
erale ne
peut pas �etre d
e�nie�

Cette th�ese commence par un
etat de l�art du domaine mettant l�accent sur les
di	
erentes approches et terminologies existantes� La caract
erisation de chacune des com�
posantes fondamentales des AE est alors d
etaill
ee et ces composantes sont regroup
ees dans
un outil de classi�cation appel
e TEA �tableau des algorithmes d�
evolution�� Ce tableau
est utilis
e comme base pour l�analyse des crit�eres in
uen�cant la parall
elisation des AE a�n
de d
e�nir des r�egles de parall
elisation� L�analyse consid�ere sp
ecialement l�impl
ementation
d�AE hybrides sur des architectures MIMD�DM�� Une notation de la granularit
e des AE
parall�eles y est entre autre propos
ee� Suite �a cette analyse� une librairie orient
ee objet
�nomm
ee APPEAL� est con�cue� puis utilis
ee pour valider exp
erimentalement les r�egles
de parall
elisation qui ont
et
e d
e�nies� Di	
erents AE hybrides sont ainsi ex
ecut
es sur un
r
eseau de stations de travail pour traiter deux probl�emes � le placement des antennes
d�un r
eseau de t
el
ephonie mobile� et le probl�eme classique de coloration d�un graphe�
Finalement� les r
esultats obtenus sont compar
es et une discussion sur les suites �a donner
�a ce travail conclut le rapport�

Mots cl�es� parall
elisme� algorithmes d�
evolution� optimisation combinatoire� taxonomie�
conception logicielle orient
ee objet� plani�cation de r
eseaux radio� coloration de graphes�

�MIMD�DM signi�e machine �a �ot d�instructions multiple travaillant sur un �ot de donn	ees multiple
avec une m	emoire distribu	ee�

v

vi

It is only with the heart that one can see rightly�
What is essential is invisible to the eye�

Le Petit Prince� �����
Antoine de Saint�Exup	ery
���������

Acknowledgments

I would like to thank Prof� Giovanni Coray� director of the computer science theory laboratory
�LITH� at the Swiss Federal Institute of Technology �EPFL�� who accepted to be my thesis
supervisor� I also want to thank Dr� Pierre Kuonen� researcher in the same laboratory� who
was my mentor� They both gave me a lot of fruitful advice for completing this thesis and
contributed to the friendly atmosphere of the laboratory�

I would like to thank those who accepted to be referees and members of the jury of this
PhD thesis� Prof� Michel Cosnard �director of the INRIA Lorraine research unit� Nancy� France��
Prof� Denis Trystram �responsible for the parallel computing team at the modeling and comput�
ing laboratory� IMAG� Grenoble� France�� Prof� Alain Hertz �professor at the chair of operational
research at EPFL� and president of the Swiss operational research society�� Prof� Daniel Mange
�director of the logic systems laboratory at EPFL�� and Jean�Fr�ed�eric Wagen �project leader at
the Swiss telecommunication company Swisscom�� I also want to thank Prof� Jacques Zahnd
who accepted to chair the jury�

I am very grateful to those who accepted to read the 	rst version of this manuscript and
whose remarks permitted to improve it� Dr� Fr�ed�eric Vivien� Dr� Afzal Ballim� Dave Nespoli�
and Dr� Fr�ed�eric Guidec whom it was a pleasure to share the same o
ce and to work with for
three years� I would like to thank Sophie Fallot�Josselin� Daniel Wagner� Jean�Michel Coup�e�
and Mahmoud El Husseini who I enjoyed to work with in the project STORMS�� I also want to
thank Dr� Franck Nielsen whose theoretical point of view was rewarding� and Dr� Daniel Kobler
who completed his PhD thesis within the same project as I� and whose collaboration allowed
the exchange of original ideas�

I thank all those I love and who supported me� My parents who gave me the love for science
and who are thus at the origin of this work� An�zela who gave me the power to complete it� and
my brother Didier who designed the logo of the project LE O PA RD ��

This work is part of the project LE O PA RD that was funded by the Swiss National Science
Foundation �grants �
������������
 and ��������������� It is a logical continuation of the

project PAC �Parallelization of Combinatorial Optimization
Algorithms� funded by the same foundation �grants SPP�IF
������������
�������� A part of this work was done within the
European project STORMS that was framed in the �th ACTS
Program �Advanced Communications Technologies � services�
partially funded by the European Commission �AC�
�� and
Swiss fund OFES �
�������� The experiments were made on
networks of workstations provided by EPFL�

�Project STORMS
 Software Tools for the Optimization of Resources in Mobile Systems�
�Project LEOPA RD
 parallel population�based methods for combinatorial optimization�

vii

viii

Contents

Abstract iii

Version abr�eg�ee �French abstract� v

Acknowledgments vii

� Introduction �

� State of the art �
��� Combinatorial optimization problems �

����� De�nitions �
����� Classes �

��� Classical heuristics �
��� Evolutionary algorithms �

����� Genetic algorithm ��
����� Evolution strategy ��
����� Evolutionary programming ��
����� Ant colony system ��
����� Population�based incremental learning � � � � � � � � � � � � � � � ��
����� Other evolutionary algorithms ��
����� Hybrid approaches ��

��� Parallel computing ��
����� De�nition of a parallel algorithm � � � � � � � � � � � � � � � � � � ��
����� Parallel computer architectures ��
����� Parallel computing constraints ��
����� Classical parallel algorithm models � � � � � � � � � � � � � � � � � ��

��� Classi�cation of parallel EAs ��

� Evolutionary algorithm mechanisms ��
��� The need for a proper parallelization ��
��� An original taxonomy of EAs ��

����� Motivation for parallelization ��
����� Background ��

ix

x CONTENTS

����� Main ingredients of an EA ��
����� The basic TEA ��
����� Hierarchical ingredients ��
����� Examples ��
����� Extensibility ��

��� About islands and topology ��
����� Structured space phenomenon ��
����� Island phenomenon ��
����� Discussion ��

��� An island�based genetic ant algorithm ��
����� Motivation ��
����� Description ��

� Parallelization of evolutionary algorithms �	
��� Parallelization analysis ��

����� The architectural choice ��
����� Levels of parallelization ��
����� In
uence of the main ingredients � � � � � � � � � � � � � � � � � � ��
����� Other important criteria for parallelization � � � � � � � � � � � � � ��
����� Hybrid algorithms ��

��� Case study ��
����� Parallel island�based genetic algorithms � � � � � � � � � � � � � � � ��
����� Parallel island�based ant system ��
����� Parallel island�based genetic ant algorithm � � � � � � � � � � � � � ��

��� A library for evolutionary algorithms ��
����� Requirements ��
����� Existing libraries ��
����� Object�oriented model of APPEAL � � � � � � � � � � � � � � � � � ��
����� Implementation of APPEAL ��
����� Current state and future evolution of APPEAL � � � � � � � � � � � ��

��� Alternative approaches to the parallelization of EAs � � � � � � � � � � � � ��
����� Parallelization based on autonomous agents � � � � � � � � � � � � ��
����� Asynchronous parallelization ��

� Transceiver siting application
�
��� Problem modeling ��

����� Urban radio wave propagation simulation software � � � � � � � � � ��
����� Cells ��
����� Examples of instances� ��
����� Modeling of the service� ��
����� Problem representation using set systems � � � � � � � � � � � � � � ��
����� Hitting set and set cover problems � � � � � � � � � � � � � � � � � � ��

��� Greedy�like algorithms ��

CONTENTS xi

��� Experimental conditions ��
����� Network con�guration for speed�up measurements � � � � � � � � � ��
����� In
uence of islands on execution time � � � � � � � � � � � � � � � � ��
����� The choice of the number of generations � � � � � � � � � � � � � � ��

��� Parallel island�based genetic algorithms ��
��� Parallel island�based ant systems ��
��� Parallel island�based genetic ant algorithm � � � � � � � � � � � � � � � � � ���
��� Quality of the results ���

����� Results ���
����� In
uence of islands on the results � � � � � � � � � � � � � � � � � � ���
����� Results of other algorithms ���
����� Summary ���
����� Cooperation with other projects ���

� Graph coloring application ��

��� De�nition of the problem ���
��� Examples of instances ���
��� Greedy�like algorithm ���
��� Parallel island�based genetic algorithms ���
��� Parallel island�based ant systems ���
��� Parallel island�based genetic ant algorithm � � � � � � � � � � � � � � � � � ���
��� Quality of the results ���

����� Results ���
����� Summary ���

 Conclusion ��	
��� Summary ���
��� Major contributions of this work ���
��� Perspectives ���

A Glossary and acronyms ���
A�� Glossary of usual evolutionary terms ���
A�� Frequently used acronyms ���

B Demonstrations ���
B�� Theoretical e�ciency with indivisible islands � � � � � � � � � � � � � � � � ���
B�� Theoretical e�ciency with partitioned islands � � � � � � � � � � � � � � � ���

List of Algorithms ��	

Bibliography ���

Index ���

xii CONTENTS

The last thing one knows when
writing a book is what to put �rst�

Pens	ees� ����� Blaise Pascal
���������

Chapter �

Introduction

Since the ���s� computer science and its attendant research �elds have evolved very
quickly� Hardware is faster and faster every year� and software allows one to solve prob�
lems that were unconceivable a few years ago� Four kinds of interests can be distinguished
among research �elds in computer science�

� the kind of problems that must be solved �optimization� numerical simulation�
arti�cial intelligence� compilation� etc���

� the class of algorithms that can be used �greedy� evolutionary� output sensitive�
etc���

� the methodologies for producing software �language� software engineering� imple�
mentation choices� etc���

� the hardware that must be designed� constructed and�or used �architecture� chips�
cost� etc���

The work presented in this thesis is at the cross�road of combinatorial optimization�
evolutionary computation� object�oriented programming� and parallel computing�

Combinatorial optimization problems have existed for ages ����� but the �rst attempts
to solve them with computers started only �� years ago� At the beginning� only small
problem instances were treated but since the ���s the growth of computation power has
permitted solutions to complex problems in a larger search space than in the past� One
of the biggest challenge that is given to computer scientists is to solve huge combinato�
rial optimization problem instances� Experience shows that constructive methods �such
as greedy algorithms� are too easily trapped in local optima to solve such problems e��
ciently ��� ���� Sequential approaches �such as simulated annealing or tabu search� behave
much better than the latter but they converge slowly and are di�cult to parallelize in
order to be sped up using parallel architectures�

Evolutionary algorithms �EAs� are inspired by biology and natural evolution mecha�
nisms� They can investigate several points of a search space concurrently and are thus

�

� CHAPTER �� INTRODUCTION

rarely trapped in local optima� They are therefore well �tted to treat combinatorial op�
timization problems e�ciently� However� they need a lot of computation power and even
if the �rst EA was introduced by J� Holland in ���� ����� real experimentations on such
algorithms only started in the early ���s� A drawback of the youth of EAs is the lack
of theoretical proof of their e�ciency� Experience shows their good behavior but global
studies are confused by the use of di	erent terms to refer to the same notions in di	erent
EAs� The profusion of new terms that refer to well�known notions and techniques leads
to an apparent lack of rigor and gives EAs a bad reputation� De�nitions and state of the
art of EAs for combinatorial optimization problems are given in Chapter ��

The development of programs that contain more than ������� lines of code with com�
plex data structures requires software engineering techniques� Object�oriented program�
ming� that is one of the most popular ����� appeared with Simula in ���� and Smalltalk
in the ���s� It su	ered from the lack of real object�oriented compilers that could support
all of its concepts� The languages and compilers that appeared later in the ���s were
lacking of maturity� they were generating slow programs �e�g�� Ei	el ����� or were not
supporting most of object�oriented paradigms �e�g�� C�� ������ The �rst languages and
compilers that could really be trusted for big projects appeared in the ���s �e�g�� Ei	el�
even if some of them still have important gaps �e�g�� C�� ������

The reliability of hardware allows the design of parallel computers that run thou�
sand of concurrent processors� The �rst computers that were designed using parallelism
appeared around ���� �e�g�� the � � � array of processors ILLIAC IV ������ Parallel
computing implies research in graph theory� topology� programming language theory and
computer architecture� The main advantages of processing a program on parallel super�
computers �or networks of workstations� are to speed up their execution and to bene�t
from a huge memory space �i�e�� the sum of the memory of each processor�� Until recently�
it was mostly studied in order to perform intensive numerical simulations� The interest to
deal with irregular problems �that cannot be modeled with regular matrices� only begun
recently with the appearance of massively parallel supercomputers� Chapter � gives the
necessary basics of parallel computing to understand the present work�

The dream would be to design an e�cient program that is able to solve any huge
combinatorial optimization problem very quickly� This is not realistic� however the in�
creasing cooperation of di	erent research communities makes it possible to pro�t from
each other�s knowledge in order to get as close as possible to this situation�

The objective of the present work is to make e�cient parallelization of EAs easier�
It is not to prove their e�ciency but rather to give a clear view of their mechanisms
in order to better understand how to parallelize them� The �rst stage is to extract
the fundamental ingredients of well�known EAs� such as genetic algorithms �GA�� scatter
search �SC�� evolution strategies �ES�� and ant systems �AS�� to de�ne a uni�ed taxonomy�
In Chapter �� the di	erent ingredients are identi�ed and used to propose a classi�cation
tool called the TEA �Table of Evolutionary Algorithms�� This table is then taken as a basis
for the analysis of the best way to implement an EA on parallel machines� This analysis

�

considers especially MIMD�DM� computers that are more and more used because of their

exibility and their availability �a simple network of workstations can be used as a MIMD�
DM machine�� Chapter � o	ers a complete description of this analysis and presents the
concepts of a software library that was designed from it� This object�oriented library�
named APPEAL �Advanced Parallel Population�based Evolutionary Algorithm Library��
implements most of the rules de�ned in preceding chapters in order to test them�

As test problems� two applications were chosen� They are used to evaluate speed�ups
and to compare algorithms� First the transceiver siting application� a realistic problem
related to telecommunications� is treated in Chapter �� Second� the graph coloring appli�
cation� a classical combinatorial optimization problem� is dealt with in Chapter �� The
�rst application makes it possible to apply a part of this work to the European project
STORMS�� The second application is studied in order to check some experimental results
obtained with the transceiver siting application as well as to verify the versatility of the
library APPEAL� Finally� conclusion and perspectives are proposed in Chapter ��

�MIMD�DM stands for Multiple Instruction stream� Multiple Data stream� Distributed Memory�
�STORMS stands for Software Tools for the Optimization of Resources in Mobile Systems�

� CHAPTER �� INTRODUCTION

There are always two people in every
picture� the photographer and the viewer�
Ansel Adams� photographer
���������

Chapter �

State of the art

This chapter presents a quick overview of combinatorial optimization problems and a state
of the art of evolutionary algorithms used to solve them� It ends with an introduction to
parallel computing notions that are necessary to understand the next chapters�

��� Combinatorial optimization problems

����� De�nitions

Many usual computational problems amount to searching for the best choice among
di	erent possibilities� what is the shortest path to visit a set of cities what is the best
position for antennas in a radio network what is the best scheduling for a crew This
section de�nes the class of combinatorial optimization problems that includes all of them�

An optimization problem ���� is de�ned by a set Y and an objective function f � Y � R �
The objective function f assigns to each candidate y � Y a value f�y�� The goal when
solving an optimization problem Po�Y� f� is to �nd an optimal solution yopt � Y that
minimizes the objective function f � that is �y � Y� f�yopt� � f�y�� It can be noted that
an optimal solution yopt such that f�yopt� ! miny�Y f�y� is not necessarily unique� and
that since max f�y� ! �min��f�y�� restriction to function minimization is without loss
of generality� When a neighborhood function N � Y � P�Y � is de�ned�� a candidate
ym that veri�es �y � N �ym�� f�ym� � f�y� is called a local optimal solution� An optimal
solution is sometimes called a global optimal solution in order to avoid any confusion
with a local one�

A combinatorial problem is de�ned by a search space S and a set of constraints
C ! fc�� c�� � � �g that formalizes the problem� A search space is a �nite� or possibly
countably in�nite� set of elements s that are called candidates� A candidate that satis�es
all the constraints ci of a combinatorial problem Pc�S�C� is said to be a feasible solution
�or simply a solution� of Pc�S�C� �it is called an infeasible solution of Pc�S�C� otherwise��

�P�Y � is the set of subsets of Y �

�

� CHAPTER �� STATE OF THE ART

The aim when solving a combinatorial problem Pc�S�C� is to �nd a feasible solution s� � S
for Pc�S�C��

a feasible solution

search space

candidates

an optimal solution

Figure ���� Simple representation of a search space�

Following the two previous de�nitions� a combinatorial optimization problem can be
de�ned by a set of constraints C� a search space S� and an objective function f � S � R�
The aim when solving a combinatorial optimization problem Pco�S�C� f� is to �nd an
optimal solution �according to the objective function f� among the feasible solutions
that satisfy the constraints C in S� In other words� to solve Pco�S�C� f� is equiv�
alent to determine the set X � S of all feasible solutions of Pc�S�C�� and to �nd
sopt � X� f�sopt� ! mins�X f�s� �i�e�� to solve Po�X� f��� Figure ��� gives an informal
representation of a search space when solving a combinatorial optimization problem�

Let us illustrate these de�nitions by taking the traveling salesman problem
TSP

as an example of combinatorial optimization problem� First let us de�ne the following
combinatorial problem�

� Given a graph G� �nd a path that visits each vertex of G exactly once�

Let us now add to this problem an objective function f � Nn � R that associates to each
path its length� The TSP can then be de�ned�

� TSP �optimization version�� Given a graph G� what is the shortest path that visits
each vertex of G exactly once

It can also be de�ned as�

� TSP �evaluation version�� Given a graph G� what is the length of the shortest path
that visits each vertex of G exactly once

A combinatorial optimization problem whose solution �or answer� is either �yes� or �no�
is called a recognition
or decision
 problem� For example� the recognition version of the
TSP is�

� TSP �recognition version�� Given a graph G� is there a path of length shorter than
� that visits each vertex of G exactly once

���� COMBINATORIAL OPTIMIZATION PROBLEMS �

The description of a problem is not general and needs additional data to be solved� A
problem together with input data de�ne an instance of the problem� Reciprocally� a
problem is the set of all its possible instances� For example� the TSP is a problem and
the TSP together with a given graph �that represents the road map and the cities of
Switzerland for example� is an instance of this problem� Although it is very important
to distinguish between a problem and its instances� in the remainder of this report the
distinction is not explicitly made when no ambiguity is possible�

����� Classes

A complete description of the di	erent classes of combinatorial optimization problems
can be found in ���� ���� Here is a brief overview of the P and NP classes�

P is the class of recognition problems that can be solved by a polynomial�time al�
gorithm� They are considered as easy problems� For example� P contains the graph
connectedness problem�

� Is a given graph G connected

NP �Non�deterministic Polynomial� is a richer class of recognition problems� For a
problem to be in NP� the only requirement is� if x is an instance of the problem whose
answer is �yes�� then there must exist a concise certi�cate of x �i�e�� of length bounded
by a polynomial in the size of x� which can be checked in polynomial time for validity�
It is proven that P � NP� but nobody knows whether P ! NP or not ���� ���� It is
however believed that NP � P� This conjecture is one of the most prominent theoretical
problems in computer science�

The most di�cult problems of NP are called NP�complete problems� They have the
following properties�

�� No NP�complete problem can be solved by any known polynomial algorithm�

�� If a polynomial algorithm can solve one NP�complete problem� then every NP�
complete problem can be solved by a polynomial algorithm�

A NP�hard problem is a combinatorial optimization problem whose recognition version
is NP�complete�

NP�complete �and NP�hard� problems are considered as computationally intractable�
That is� an algorithm that could solve them requires an exponential amount of time�
In the worst case� such an algorithm would need to enumerate every possible candidate
of their search space� Consequently� only very small instances of such problems can be
solved within a reasonable amount of time� and large ones are impractical� A heuristic
is an algorithm that has absolutely no warranty to �nd an optimal solution but that
has a �good� chance to �nd a �good� one� Such algorithms are needed to treat large
instances of combinatorial optimization problems� hence sub�optimal solutions instead of
exact ones�

� CHAPTER �� STATE OF THE ART

��� Classical heuristics

sopt

S

S�

S�

Constructive approach

�a�

sopt

s�
s�

s�

s�
s�

s�

Sequential approach

�b�

Figure ���� Two traditional search principles for combinatorial optimization�

a
 A solution is constructed by reducing the search space S such that
Si ! fs ! �x�� x�� � � � � xn� � Sjx�� x�� � � � � xi are �xedg� i � N �

b
 Elementary modi�cations are repeatedly applied to a candidate si � S�

Three general search principles are known for solving combinatorial optimization prob�
lems ����� The �rst two are introduced hereafter and the third one is described in the
next section�

The constructive approach� schematized in Figure ����a�� consists in taking an empty
candidate s� ! �� and constructing a feasible solution by repeatedly choosing its com�
ponents� A component xi is added into a partial solution si�� ! �x�� � � � � xi��� until a
feasible solution sn is constructed� This process can be seen as an iterative reduction of
the search space� A part of a solution implicitly de�nes a set of solutions �all possible
extensions of that given part�� It may thus be viewed as a shorthand description of
this set� Two examples of constructive approaches are given by greedy�like algorithms�
Algorithm �� �page ���� and Algorithm �� �page �����

Such a constructive method can be generalized to algorithms that make use of back�
tracking �like a branch and bound algorithm�� In such algorithms� it is possible to enlarge
the search space from time to time� For example� when a partial solution si ! �x�� � � � � xi�
is constructed� it is possible to backtrack to a previous one sj ! �x�� � � � � xj� with j � i
and to continue the constructive process from sj�

The sequential approach �also called iterative approach� local search� or neighborhood
search�� schematized in Figure ����b�� starts with an initial candidate s� that can be
chosen at random or built by a constructive algorithm� The process consists in repeatedly
modifying a candidate si� More formally� let us de�neMsi the set of acceptable elementary
modi�cations m at a candidate si� and Nsi ! fs� � S j 	m � Msi� si
 m ! s�g the
neighborhood of si� At each step of the process� the current candidate si is transformed
into si�� � Nsi� The process stops when a termination criterion is met� A stop criterion
can be one or a combination of conditions such as�

� a given number of modi�cations have been performed�

���� EVOLUTIONARY ALGORITHMS �

� the objective function f�si� exceeds a lower bound B�

� a �xed time Tstop has passed�

� a local optimum is reached ��s � Nsi� f�s� � f�si���

An example of the sequential approach is illustrated by the tabu search algorithm �����

��� Evolutionary algorithms

Evolutionary approach

sopts���

s���

s���

s���

s���

s���

s���

s���

s���

Figure ���� A third search principle for combinatorial optimization� A subset Pgen of the
search space S evolves in order to �nd an optimal solution among its members� Each
iteration step is called a generation
index by gen
�
Pgen ! fsgen�i � S" i � ��� m�� m ! �g� gen � N

Let us de�ne an Evolutionary Algorithm
EA
 as a population�based algorithm� This
means that its state at any time is a set of candidates �or solutions�� in opposition to
other algorithms whose state at any time is usually a single solution or a part of the
solution that is being constructed �cf� previous Section�� A sequential approach might
be seen as a degenerate EA� In this case� the set of candidates would contain only one
candidate� Similarly� a constructive approach might be seen as a degenerate EA� In
this case� the set of candidates would be de�ned as the set of every possible extension
of a partial solution� However� these two degenerate approaches are not considered as
evolutionary approaches�

Most of EAs are inspired by biology and natural evolution mechanisms �evolution
of species� social evolution of communities� etc��� That is why a speci�c �biological�
vocabulary is commonly admitted in the evolutionary computation community �cf� Ap�
pendix A���� For example� a candidate is called an individual � its encoding is called its
genotype �or its genome� and its appearance �or meaning� is called its phenotype� The
role of an EA is to control the evolution of a set of individuals that is called a population�
During this evolution� individuals are created� modi�ed� added� removed� etc� A �tness
value is assigned to each individual� indicating how �good� the candidate modeled by the
individual is for a given problem instance� The �tness function that computes this value
is similar # and even often equal # to the objective function of an optimization problem�

�� CHAPTER �� STATE OF THE ART

Our de�nition of EAs is consistent with current publications ���� and with the de�ni�
tion given in the evolutionary computation FAQ ����� �EA is an umbrella term used to
describe computer�based problem solving systems which use computational models of some
of the known mechanisms of evolution as key elements in their design and implementa�
tion�� It is however a little bit more general since the same reference restricts EAs to
algorithms that �share a common conceptual base of simulating the evolution of individ�
ual structures via processes of selection� mutation� and reproduction�� For example� ant
systems �that will be described in Section ������ do not make use of selection� mutation
or reproduction operators to solve combinatorial problems� However they simulate the
evolution of a population of individuals �called ants� inspired by social rules observed in
real ant colonies and they can thus be considered as EAs�

A characteristic of EAs is their ability to visit �or explore� di	erent regions of the
search space simultaneously� This exploration is usually paired with the exploitation of
the considered candidates� This counterbalancing concept aims at optimally using �or
exploiting� information contained in the candidates� Diversi�cation strategies are often
used in order to favor exploration and thus to avoid a converging too quickly on the
whole population in a same region� The notion of diversi�cation derives from the tabu
search literature ����� where it is contrasted with randomization� rather than seeking
unpredictability� diversi�cation seeks to attain an objective that implies a special form
of order� such as maximizing a minimum weighted separation from chosen collections of
points previously generated� On the other side� intensi�cation strategies are used to act
towards an improvement of the quality of the candidates� They favor exploitation�

In some algorithms� the whole population models a single candidate of a problem
instance� Such algorithms have internal mechanisms similar to those of EAs as de�ned
here� they handle a set of elements that can be viewed as a population of individuals�
However� these elements model a part of a candidate instead of a complete candidate and
only one single candidate is considered at once� These algorithms are thus fundamentally
di	erent and have none of the properties of EAs such as the capability of exploring
di	erent parts of the search space simultaneously� Consequently they are not considered
in this work� An example of such an algorithm is given by the emergent colonization
algorithm �����

The result of an EA is the solution modeled by the individual with the best �tness
value found in the population during the whole evolution� This individual is not always
present in the population at the end of the evolution process since it does not necessarily
participate in the evolution of the population� It must thus be memorized during the
evolution� If the best individual is guaranteed to participate in the evolution �and thus
to be present in the population at the end� then the EA is said to be 	elitist�

Little di	erences can sometimes be found here and there in the de�nition of evolu�
tionary terminology �population� individual� etc��� A glossary of these terms is brie
y
given in Appendix A�� and a complete analysis of their meaning is given in Section ����

The �rst algorithm that was known as an EA is the Genetic Algorithm �GA� intro�
duced by J� Holland in ���� ����� The following sections give a brief overview and the
pseudo�code of the principal algorithms that are classi�ed as EAs� Each algorithm is

���� EVOLUTIONARY ALGORITHMS ��

described with the terms and notations of its original de�nition �except for a few details
that were adapted for homogeneity reasons��

����� Genetic algorithm

Genetic Algorithms
GA
� introduced by J� Holland ���� in the ���s� are inspired by the
genetic mechanisms of natural species evolution� In GAs� four phases can be identi�
�ed �see Figure ����� Genotypes of individuals are generally encoded as chromosome�like

Population

O�spring

Individuals

selection

crossover

matingmutation

Couples of
parents

Intermediate
population

Figure ���� The four phases of a genetic algorithm�

bit strings� First� an initial population of individuals is generated �usually at random��
An intermediate population is then created by selecting individuals according to their
relative �tness value �a given individual can be selected several times�� This may be per�
ceived as an allocation of reproductive opportunities� the higher the �tness value of an
individual� the likelier it is to be selected� When this intermediate population has been
�lled� it is emptied by taking individuals in pairs out of this population �each individual
can be taken only once�� On each of these pairs� a crossover operator is applied with
a probability of pc� It consists in exchanging some information between the two geno�
types� This operator generates two new individuals by mating the two given ones� For
example� the one�point crossover cuts two given bit strings at a same random position
and recombines them by exchanging their ends� thus producing two new bit strings �or
o�spring�� These o	spring are put into a new intermediate population� If the crossover
operator is not applied �which happens with probability ��pc�� the couple of individuals
is put directly into the new intermediate population without changes� The selection and
crossover operators compose the cooperation step of the GA� In the end� a mutation ope�
rator introduces noise in this population by randomly modifying some individuals� This
second step of the GA� called the self�adaptation step� prevents premature convergence
of the population� A common way to make this� is to take a mutation operator that
ips
the value of a randomly chosen bit of a bit string� This operator is then applied with
probability pm to each individual�

�� CHAPTER �� STATE OF THE ART

The individuals of the intermediate population replace all� or a part of� the individuals
in the initial population� In a generational replacement GA� the intermediate popula�
tion has the same size as the initial population� renewing the whole population in one
generation� This is not the case in a steady�state GA� in such an algorithm� the size of
the intermediate population is much smaller than the size of the initial population �for
example only one or two couples�� Moreover� the o	spring do not necessarily replace their
parents but can take the place of any other individuals �at random� or among the worst
for example�� The execution terminates after a prede�ned number of generations �typi�
cally twice the total number of individuals�� More detailed descriptions of GAs can be
found in ���� and ����� Algorithm � summarizes the standard genetic algorithm described
in Chapter � of �����

Algorithm �
�� Standard genetic algorithm ��
�� determine an initial population P at random
�� generation count � �
�� repeat
�� generation count � generation count $�
�� while Pintermediate not full do
�� select indi� and indi� in P
�� �o	sp�� o	sp�� � crossover�indi�� indi�� with probability pc
�� put o	sp� and o	sp� in Pintermediate

�� for each individual in Pintermediate

��� mutate�individual� with probability pm
��� P is updated with the individuals of Pintermediate

��� until termination condition is met

According to Holland ���� the number of schemata �i�e�� similarity subsets� processed
in one generation is proportional to the cube of the population size� hence the need of
large population to perform a wide exploration of the search space�

Genetic programming
GP
 is an extension of the genetic model into the space of
programs �i�e�� a candidate of the search space is a computer program�� In this context�
individuals are programs usually expressed as parse trees� and their �tness value is the
result obtained when running this program� More information is available in �����

����� Evolution strategy

The development of Evolution strategies
ES
 started with I� Rechenberg and H�P� Schwe�
fel in the ���s to solve hydro�dynamical problems ���� ��� However� the �rst versions of
ES were closer to simulated annealing than to an EA since they were handling only two
individuals� The �rst ES that was really population�based appeared in the ���s and the
��� ���strategy that is the state�of�the�art was introduced in ���� ����� The latter handles
a population of � parents and � o	spring� The o	spring are created by combining and

���� EVOLUTIONARY ALGORITHMS ��

mutating parents� and at each generation the � best o	spring replace the parent popu�
lation� In a variant� the ��$ ���strategy� the � best individuals �i�e�� among parents and
o	spring� become the new parents of the next generation� Algorithm � summarizes the
major components of an ES�

Algorithm �
�� Evolution strategy ��
�� Q ! Pi for a ��$ ���strategy� and Q !
 for a ��� ���strategy with � � � � � ��
�� determine an initial set P� of size �
�� i � �
�� repeat
�� generate P �

i of size � by combining and mutating individuals of Pi

�� select � individuals in P �
i �Q to put in Pi��

�� i � i$ �
�� until termination condition is met

In ES� an individual consists of up to two components� called strategy parameters�
in addition to a real valued vectorial genotype x � Rn � These strategy parameters are
variance � � Rn� and covariance 	 � ��
�
�n� of a generalized n�dimensional normal
distribution� where n� � f�� � � � � ng and n� � f�� ��n� n����n� � ����g� They determine
the mutability of the individuals and can themselves be applied to evolutionary opera�
tors �mutation� etc��� The aim is to achieve the self�adaptation of parameters and the
exploration of the search space simultaneously�

����� Evolutionary programming

Evolutionary programming �EP� is an EA similar to ES that was developed independently
by L� J� Fogel ���� in the ���s� The only di	erences is the selection mode that is done
stochastically via a tournament in EP whereas the worst solutions are removed in a
deterministic way in ES� It is also mentioned in ���� that no recombination mechanism
is used in EP whereas it can be used in ES�

����� Ant colony system

Ant System
AS
 is a class of algorithms that were inspired by the observation of real ant
colonies� Observation shows that a single ant only applies simple rules� has no knowledge
and is unable to succeed in anything when it is alone� However� an ant colony bene�ts
from the coordinated interaction of every ant� Its structured behavior �described as a
�social life�� leads to a cooperation of independent searches with high probability of
success� ASs were initially proposed in ���� ��� to solve the well�known NP�hard TSP
�cf� Section ������ that aims at �nding the shortest closed tour that passes once by each
vertex of a given graph�

�� CHAPTER �� STATE OF THE ART

A real ant colony is capable of �nding the shortest path from a food source to its nest
by using pheromone information� when walking� each ant deposits a chemical substance
called pheromone and follows� in probability� a pheromone trail already deposited by
previous ants� Assuming that each ant has the same speed the path which ends up with
the maximum quantity of pheromone is the shortest�

nest food

path�

path�

�a�

nest food

�b�

nest food

�c�

nest food

�d�

Figure ���� Behavior of an ant colony�

This process is illustrated in Figure ���� at the beginning� ants have no indication on
the length of the paths between their nest and the food source� each path is then taken
at random by half of the ants in average �Figure ����a��� After one unit of time ants that
took path� have arrived while the others are half�way� They all deposit pheromone trails
on their path �Figure ����b��� The �rst ants are more likely to go back to the nest by
their own initial way since no pheromone is deposited at the extremity of path� yet� After
two units of time the �rst ants are back while the others arrive� The pheromone density
is double on path� �Figure ����c��� From now on� each ant that leaves the net prefers to
take path� that receives thus more and more pheromone �Figure ����d��� Consequently�
the shortest path found is path��

In fact� when an ant must choose a direction to take� the choice is made according to
its visibility �or knowledge� of the problem� and according to the trails� Algorithm � is
directly inspired by this behavior�

Three di	erent algorithms of the AS class were introduced� They only di	er by the
quantity of pheromone an ant leaves when it walks on pathij� an edge from a node i
to a node j� Let us note %�kij the quantity of pheromone left by an ant k on pathij�
In the Ant�quantity algorithm� %�kij is a constant� In the Ant�density algorithm� %�kij is
inversely proportional to the length of pathij� In the Ant�cycle algorithm� %�kij is inversely
proportional to the complete tour length done by ant k� In this last case� %�kij can only
be computed once ant k has �nished its complete tour� whereas %�kij is known during its
moves in the two former cases� The trail left on pathij by a colony is the normalized sum
of the trails left by every ant of the colony on this path during one generation�

%�ij !
%� �ijP
l %�

�
il

with %� �ij !
X
k

%�kij �����

���� EVOLUTIONARY ALGORITHMS ��

Algorithm �
�� Ant system ��
�� initialize the trails
�� cycle � �
�� repeat
�� cycle � cycle $�
�� for each ant
�� construct a solution sa using trails and visibility
�� evaluate the objective function at sa
�� update the trails
�� until cycle � max cycle

A random�proportional state transition rule is used to decide which node an ant must
visit from a node i at a time t� The transition probability pij for an ant to go from node i
to node j depends on its visibility
ij ! ���length of pathij�� and on �ij the intensity of
the pheromone trail�

pij�t� !
��ij�t��

��
ij�t��
�P

l�allowed ��il�t��
��
il�t���

with �ij�t $ n� ! � � �ij�t� $ %�ij�t� t$ n� �����

where �� � �� represents the evaporation of trails� 	 the importance given to the trails�
and � the importance given to the visibility� The time unit �t ! �� corresponds to one
move of an ant �i�e�� �t ! n� corresponds to the time needed to complete a tour of length
n�� It can be noticed that if 	 ! �� ants loose their sense of smell �they do not use
trails anymore� and thus the algorithm follows a greedy�like rule� Detailed description
and de�nitions of the di	erent terms can be found in ���� ����

Ant Colony System
ACS
 was introduced later in ���� to improve AS� ACS di	ers
from AS by three main aspects�

� the global updating rule is applied only to edges which belong to the best ant tour�

� a local pheromone updating rule is applied�

� when constructing an ant� the state transition rule provides a way to exploit more
or less the accumulated knowledge of the problem� This state transition rule that
decides about the node h that an ant must visit from a node i is�

h !

�
argmaxj�allowedf��ij����
ij��g if q � q� �exploitation�
g otherwise �biased exploration�

�����

where q is a random number uniformly distributed in ��� ��� q� � ��� �� is a parameter�
and g is selected according to the probability distribution given in Equation ����

�� CHAPTER �� STATE OF THE ART

����� Population�based incremental learning

The Population�Based Incremental Learning
PBIL
 algorithm is presented in ��� as an
abstraction of the standard GA and as a combination of evolutionary optimization and
hill�climbing� It is however more similar to an AS than to a GA� It does not use crossover
operations and creates a new population at each generation by sampling a probability
vector Pr� This vector is updated at each generation with high�evaluation solutions
�i�e�� individuals with good �tness value� encoded as bit�strings� The main steps of the
PBIL together with the formula used to update Pr are shown in Algorithm �� The
objective is to have a probability vector which� when sampled� generates high�evaluation
solutions with high probability�

Algorithm �
�� PBIL algorithm ��
�� length is the size of the vectors Pr and solution�k�� �k� ��
�� LR is the learning rate� ��
�� Nsamples is the number of samples considered at each cycle� ��
�� Nupdate is the number of solutions to update Pr from� ��
�� initialize the probability vector ��i � ��� length�� P r�i� ! ����
�� repeat
�� for k ! � to Nsamples

�� generate solution�k� according to probabilities Pr
�� evaluate solution�k�
�� sort vectors solution�k� from best to worst according to their �tness
�� for j ! � to Nupdate

�� for i ! � to length
�� Pr�i� � Pr�i� � ��� LR� $ solution�j��i� � LR
��� until termination condition is met

����	 Other evolutionary algorithms

The basic Scatter Search
SC
 introduced in ���� is a population�based algorithm that
is not commonly considered an EA� It has however all the characteristics of an EA and
controls the evolution of a population of �points�� It can be summarized by Algorithm ��

Also usually not considered as an EA� the adaptative memory algorithm introduced
in ���� is based on a population of solutions that is enhanced during an adaptation process�
It was initially proposed to solve vehicle routing problems� First� it creates an initial
population of constructed solutions� This �rst step is then followed by a probabilistic
diversi�cation and intensi�cation loop� Algorithm � gives the main idea of this algorithm�

It could be argued that after the initial step the algorithm is based on a population
of �parts of solutions� and not on a population of �solutions�� However� since only
uninteresting parts of solutions are cancelled while non�trivial �i�e�� pertinent� ones are

���� EVOLUTIONARY ALGORITHMS ��

Algorithm �
�� Scatter search ��
�� determine an initial set P� of points
�� i � �
�� repeat
�� i � i$ �
�� determine a set Ti of points by linear combinations of points in Pi��

�� transform the points in Ti to get a set Fi of feasible solutions
�� improve the solutions in Fi to get a set Di of points
�� select jP�j points in Pi�� �Di to form Pi

�� until termination condition is met

Algorithm �
�� Adaptative memory ��
�� determine an initial set P of solutions with a local search algorithm
�� repeat
�� generate a new solution s by combining parts of solutions of P
�� if s is an infeasible solution then repair s
�� improve s with a local search algorithm
�� add the non�trivial parts of s in P
�� until termination condition is met

�� CHAPTER �� STATE OF THE ART

kept� it can be assumed that the property of the population is that of a population of
�solutions� in which useless information is not encoded� Line � could thus be replaced
by �add s in P� while line � would be �generate a new solution s by combining pertinent
parts of solutions of P��

����
 Hybrid approaches

De�nition

Many studies have been done to improve the quality of the results obtained with EAs �and
especially GAs ������� One of these techniques consists in making several algorithms work
together in order to pro�t from the best characteristics of each of them� The resulting
algorithm is then called a hybrid algorithm by analogy with the biological hybridization
of two complementary living organisms� In the most general framework EAs can be
hybridized with any other algorithm �even with other EAs��

A hybrid algorithm that uses both traditional methods �cf� Section ���� and evolution�
ary techniques is also known as a memetic algorithm ���� ���� This naming comes from
R� Dawkin�s biological term meme� memes are genetic encoding that can be improved
by the people that hold them �i�e�� individuals evolve their genetic heritage during their
life� whereas genes are set once for all at birth �i�e�� genetic changes are only possible
during the reproduction process��

Taxonomy

Recently� E��G� Talbi described a taxonomy of hybrid meta�heuristics� in ����� His tax�
onomy makes a distinction between design and implementation issues�

Design issues are used in order to classify the way meta�heuristics are hybridized� First
the taxonomy distinguishes the kind of interactions that associates the meta�heuristics�
Second it distinguishes the kind of dependency that links the meta�heuristics� Third it
distinguishes if the meta�heuristics are identical �i�e�� homogeneous� or not� Fourth it
distinguishes if they all explore the same search space or if each of them treats a di	erent
part of the problem� And �nally� it distinguishes if they all treat the same problem or
not� These design issues and their notations are summarized in Table ����

Implementation issues depend on the execution model of the algorithm� that is the
machine for which the algorithm was designed �and implemented�� They are described
at the end of the chapter in Section ����

Examples

When several populations evolve independently they are called islands �or demes ������
The independent EAs # one per island # cooperate by exchanging individuals thatmigrate

�The term meta�heuristic refers to EAs and traditional heuristics that can be applied to di
erent
problems� in opposition to heuristics that are designed to solve a speci�c problem�

���� EVOLUTIONARY ALGORITHMS ��

Abbreviation Meaning Description

L Low�level It addresses the functional composition of a single
optimization method� A given method of a meta�
heuristic is replaced by another method of a meta�
heuristic�

H High�level The di	erent meta�heuristics are self�contained�
There is no direct relationship to the internal work�
ings of a meta�heuristic�

R Relay A set of meta�heuristics is applied one after the
other� each using the output of the previous as its
input� acting like a pipeline�

C Co�evolutionary Many parallel agents cooperate� Each agent carries
out an independent search and exchange information
with the others�

hom homogeneous All the combined algorithms use the same meta�
heuristic�

het heterogeneous Di	erent meta�heuristics are used�
par partial The problem is decomposed into sub�problems� each

having its own search space�
glo global Every algorithm searchs in the whole search space�
spe specialist Each algorithm solves a di	erent problem �for exam�

ple� one can optimize parameters of another��
gen general All algorithms solve the same problem�

Table ���� Talbi�s classi�cation of hybrid meta�heuristics
design issues
 as it is described
in �����

from one island to another� For example� an island�based GA that was introduced in ����
runs independent GAs on distributed islands positioned on a hypercube� The algorithm
is thus a �High�level Co�evolution Hybrid� that executes homogeneous algorithms� each
of which solving the same problem in the same search space� It is classi�ed as�

HCH�GA��hom�glo�gen��

The hybrid algorithm used by D� Levine in his thesis ���� includes three kinds of
hybridization� First� it is based on a GA whose population is improved by a local search
�LS� algorithm at each generation� The embeded LS algorithm carries out independent
searches to improve individuals� hence a classi�cation as a �Low�level Co�evolution Hy�
brid� that executes heterogeneous algorithms �GA and LS��

LCH�GA�LS���het�glo�gen��

Second� the initial population of this algorithm is created by a greedy heuristic �GH��
The output of the greedy�like heuristic is used as input to the LCH GA and no other in�

�� CHAPTER �� STATE OF THE ART

teraction occurs� The classi�cation of the resulting �High�level Relay Hybrid � algorithm
is�

HRH�GH�LCH�GA�LS���het�glo�gen���het�glo�gen��

Third� this algorithm is run on independent islands �as in the previous example�� The
classi�cation of the complete hybrid algorithm is thus �nally�

HCH�HRH�GH�LCH�GA�LS���het�glo�gen���het�glo�gen���hom�glo�gen��

��� Parallel computing

Parallelism may appear at many levels in computers� from the multiple microprocessor
registry access to concurent process management� I only consider here multi�processor
algorithms �and programs� that are written to execute on several Processing Elements

PEs
� One objective of parallelizing an algorithm is to speed up its execution by dis�
tributing computation on several PEs� In the case where each PE has a local �or private�
memory space� a large distributed memory space is provided� A second objective is to
process larger data than it is possible to store on a single sequential computer memory�
The simultaneous availability of several cooperating PEs can be a warranty of robust�
ness for fault tolerant systems� This latter property can also be taken as an objective�
Parallel computing is a wide �eld whose fairly complete state of the art can be found
in ���� ��� �� ��� This section only presents the notions related to parallel computing that
are necessary for understanding the next chapters�

����� De�nition of a parallel algorithm

The Arab mathematician al�Khwarizmi ���� # c� ����� who is at the origin of the word
algebra� wrote a text on Hindu�Arabic numerals� The Latin translation of this text �Al�
goritmi de numero Indorum�� gave rise to the word algorithm deriving from his name in
the title� The notion of algorithm evolved during the years and is nowadays often related
to computers� An algorithm can have slightly di	erent de�nitions from one reference
to another� The two following de�nitions are representative of the most complete ones
commonly found in the literature� Even if their terms di	er� they are equivalent�

� An algorithm is a prescribed set of well�de�ned rules or instructions for the solution
of a problem� such as the performance of a calculation� in a �nite number of steps��

� An algorithm is a set of explicit� �nite� and precisely determined rules� the step�
by�step application of which to a complex problem will yield a solution or optimal
result��

�The English translation is �Al�Khwarizmi on the Hindu Art of Reckoning�
�Oxford dictionary of computing� �����
�Cambridge Encyclopedia� �����

���� PARALLEL COMPUTING ��

It is however possible to �nd more vague de�nitions that do not approach the termination
notion� They simply de�ne an algorithm as�

� A speci�c procedure for a computer that will either accomplish some tasks or solve
a problem� It is roughly equivalent to a computer program��

� A procedure or a set of rules for calculation or problem�solving	�

The notion of termination is sometimes generalized to algorithms such as EAs whose stop
criterion depends on the algorithm evolution� �If a potential in�nite number of steps is
required� the process can still qualify as an algorithm if a stopping rule based on solution
accuracy can be given�
�

The de�nition of a �parallel algorithm� is also not clear in the literature� It is some�
times missing in some dictionaries and it is often succinct�

� A parallel algorithm is any algorithm in which computation sequences can be per�
formed simultaneously
�

� A parallel algorithm is an algorithm in which several computations are carried out
simultaneously��

More formally� a parallel �resp� sequential� algorithm can be de�ned as a series of instruc�
tions that follows a partial �resp� total� order� and that transforms input data �number�
�les� machine state� etc�� into output data in a �nite time ���� ���� The notion of partial
order implies that some instructions may not be ordered and thus could be executed si�
multaneously� The way the instructions are processed �by a computer� a supercomputer
or by hand� is a priori not a concern� Any parallel algorithm can be changed into an
equivalent sequential one by totally ordering its instructions� It can be noted that such a
sequentialized algorithm is then not unique� It can be done by choosing an arbitrary order
that satis�es the dependencies of the instructions� or by simulating the time on a given
architecture based on theoretical model of parallelism �e�g�� PRAM ���� or BSP �������
Conversely� parallelizing a sequential algorithm into an equivalent parallel one comes to
replace some of its ordered instructions by partially ordered ones without changing its be�
havior� Such a transformation is not straightforward and it is made even more di�cult by
the search of an �e�cient� parallel algorithms for given parallel computer architectures�

����� Parallel computer architectures

Flynn ���� classi�ed parallel computers accordingly to their control capacit and data
ow
mechanisms�

�Glossary of computing terms� �����
�The Oxford English dictionary� �����
�Academic Press dictionary of science and technology� �����
	McGraw�Hill dictionary of scienti�c and technical terms� �����

�� CHAPTER �� STATE OF THE ART

� Single Instruction stream� Single Data stream �SISD� computers are classical se�
quential computers�

� Single Instruction stream� Multiple Data stream �SIMD� computers execute syn�
chronously the same instruction on every PE simultaneously� Di	erent PEs can
however handle di	erent data�

� Multiple Instruction stream� Multiple Data stream �MIMD� computers execute
di	erent instructions �and even di	erent algorithms� asynchronously on di	erent
data�

Parallel computers also divide into two categories depending on their memory architec�
ture�

� Shared memory
SM
 architecture computers have a unique large memory that can
be accessed by every PE� Communication between PEs is done through memory
accesses by writing and reading information in the common memory� Memory
access problems can be solved at two levels� They can be solved by hardware
construction� or by system routines� In the latter case� the architecture is said to
be a shared virtual memory �SVM��

� Distributed memory
DM
 or message passing architecture computers have distinct
memory units for each PE� Each of these memories can only be accessed by the
PE it belongs to� Communication between PEs is done by exchanging messages
through channels� These channels are implemented by buses organised according to
a given map� called its topology� A regular topology is usual �e�g�� a grid� a torus�
a hypercube� a ring� a k�ring� a tree� etc��� A router sometimes enhances this basic
topology architecture by optimizing direct point�to�point communication links�

Because of the high price of parallel supercomputers and because of the increasing
availability of computer networks� workstations linked by a bus �e�g�� ethernet� FDDI�
etc�� are more and more often used to run parallel programs� A Network Of Worksta�
tions �NOW� is thus considered as a MIMD�DM computer� A network of homogeneous
worstations is rather referred to as a Cluster Of Workstations �COW�� The topology of
such networks �or clusters� is often irregular and hidden� From the programmer�s point
of view it can be considered as a complete graph� However� the communications are much
slower than if a complete graph was physically implemented�

����� Parallel computing constraints

Problem of de�ning the speed�up

�It is naively admitted that a task can be done faster by a team than by a single worker�
The problem is that a lot of time can be wasted within a team because of waits� chats�
and misunderstandings�� This simple remark could summarize the problem of speeding

���� PARALLEL COMPUTING ��

up programs by taking advantage of parallelism� The notion of speed�up is however not
easy to de�ne�

Sequential time� noted tseq� is the time required by one processing element �PE� to
execute a program that solves a problem instance� Parallel time on p PEs� noted tp� is
the time needed to solve the same problem instance with p PEs��� It is implicit that the
same PEs must be used in both cases to allow any comparison �networks of heterogeneous
processors are discussed later�� tseq and tp can be theoretical� measured� or estimated�
The speed�up evaluates the speed gained by taking advantage of parallelism�

S�p� !
tseq
tp

�����

The e�ciency measures the fraction of time a typical PE is e	ectively used during a
parallel execution�

E�p� !
tseq
p� tp

!
S�p�

p
�����

The concept of speed�up �and of e�ciency� has multiple variations� since the optimal
sequential time tseq is unknown� it is sometimes de�ned in a di	erent manner� For
example� the following de�nitions can be found in the literature ��� ��� ��� �� ����

�� tseq and tp are the execution times of exactly the same parallel program P when
running on � PE and on p PEs� P is parameterized by p the number of PEs and
it implements exactly the same algorithm for every value of p� In other words�
tseq ! tp���

�� tseq is the execution time of the best �i�e�� fastest� sequential program known while
tp is that of the best program executed on p PEs� The two algorithms are likely to
be di	erent in both cases�

�� tseq is the execution time of a benchmark program that is used as a reference �even
if faster programs are known�� It can be the program the most commonly used
during a given period for example�

�� tseq and tp are the execution times of two programs that implement exactly the
same algorithm�

�� tseq is estimated by extrapolation of tp�n� � � � � tp�m where n�m � N � � � n � m�

The �rst de�nition seems to be the most appropriate to study the parallelization of
algorithms� It is chosen for the remainder of this reports� The second and third de�nitions
are subject to debate since they require �rst to elect the best �resp� the most commonly
used� program for solving a given problem� Moreover the criteria used to determine
this reference program can change from a problem to another� The fourth de�nition is

�
Often� no hypothesis is made on the memory space available� In this thesis� it is assumed that the
total memory space is p times larger on p PEs than on one PE�

�� CHAPTER �� STATE OF THE ART

a generalization of the �rst one� Indeed� it is sometimes impossible to run a program
compiled for a parallel computer on a single processor� an equivalent program �often the
same code compiled with di	erent compilers or compilation options� must then be used�
Sometimes� the input data are too large to be stored in the memory accessible by a single
processor� The memory of every PE may be needed to run the parallel application� In
this case� the �fth de�nition makes it possible to draw a speed�up graph anyway�

The number of PEs can sometimes depend on the size n of the problem� In that latter
case� the previous de�nitions are still valid provided that p be replaced by p�n�� If the
p PEs are heterogeneous tseq is the execution time of the program on the fastest PEs of
the heterogeneous network� PEs can be heterogeneous because of technical di	erences or
just because some of them are already used to process other tasks when executing the
program �in a multi�user environment� for example��

Since unpredictable external factors �such as operating system processes� can some�
times in
uence an execution time ti� it is usually not determined on a single run but it is
a statistical result of several runs �minimal or average time after �xed number of runs for
example�� This is especially true with randomized algorithms as they explicitly make use
of a random generator �unpredictable by de�nition� ����� EAs are strongly randomized
algorithms� Two di	erent executions of the same program with the same input data
�i�e�� the same instance of a problem� can thus have very di	erent execution times�

In every algorithm� there are parts that are inherently sequential and some others that
are parallelizable� Let us note r the ratio of sequential parts on the total computation�
The speed�up that can be obtained after parallelizing such an algorithm is bounded by
Amdahl�s law ����

S�p� � �

r $ ��r
p

� �

r
� �p �����

The e�ciency of a parallel program is also altered by eventual synchronizations of PEs�
by the management of the remote PEs �such as their identi�cation by unique labels�� and
by the time overhead due to communications between PEs� Figure ��� shows the shape
of a typical speed�up graph�

popt

��
��

e�
ci
en
cy Amdahl�s law limit

�
r

S
p
ee
d
�u
p

Number of PEs

Typical speed�up graph

Figure ���� The shape of a typical speed�up graph and of Amdahl�s law
see Equation ���
�
popt is the number of PEs that gives the best speed�up� & is the maximum parallelism degree
of the algorithm� and r is the ratio of sequential parts on the total computation�

���� PARALLEL COMPUTING ��

Communication load

The communication load is the part of time due to communications between PEs during
the execution of a parallel program� It includes the time needed to prepare and send
messages �data or instructions� as well as the latency of the parallel computer to initialize
a connection between PEs� The communication load depends on the size and quantity
of the exchanged messages �i�e�� the number of PEs p and the algorithm structure��

The analysis of communication load in an algorithm requires a model� For example�
the linear latency model is often used to evaluate the communication time overhead tcom�

tcom ! � $ L� �����

where � is the latency� L is the length of the message and � is the bandwidth�
When the bandwidth of channels is not large enough to communicate a desired amount

of data� a time overhead is added� This phenomenon� that is hard to predict ����� is called
contention�

Scalability

Roughly speaking� a parallel algorithm has a good scalability if it can execute e�ciently
�with a low communication load� on many PEs� For example� let us de�ne & the maximum
parallelism degree� that is the maximum number of instructions that can be executed
simultaneously in a parallel algorithm� If its speed�up graph is increasingly monotone as
long as the number of PEs is less than & and if & is large enough then the scalability of
the algorithm is excellent �see Figure ����� More information using accurate models can
be found in ���� ����

Granularity

When a sequential algorithm is parallelized� it is partitioned �implicitly or explicitly�
into tasks T�� � � � � Tn� The number and the size of these tasks de�ne the granularity
�or graininess ���� of the parallel algorithm that is created� A �ne�grain parallelism
approach consists in partitioning the algorithm in a lot of small tasks whereas a coarse�
grain parallelism approach consists in partitioning it in only a few larger tasks� The
choice of the granularity is usually closely tied to the choice of the parallel computer
characteristics �architecture� number of PEs� etc���

Dependency

The tasks of a parallel algorithm are partially ordered� Some of them can therefore be
linked by a dependency relationship� that is if task Tj depends on task Ti then task Tj
cannot execute before task Ti is �nished� This simple and intuitive rule can sometimes
lead to e�ciency problems� Indeed� when many tasks depend on many others they are
likely to waste a lot of time waiting for all the latter to �nish�

�� CHAPTER �� STATE OF THE ART

Task mapping

PEs that run small tasks are likely to �nish before those that process large computations�
An appropriate distribution of the tasks on the PEs is thus necessary �but not su�cient�
to minimize the waiting time of the PEs �i�e�� in order to maximize the e�ciency of a
parallel program in the sense of De�nition ����� A good task mapping
or allocation
 is
di�cult to achieve in practice because of unpredictable factors�

� The computation load of a task is not always known in advance�

� The number of tasks can vary unpredictably during the execution�

� Some PEs can run faster than some others because of their technological properties�

� Some PEs can sometimes be slowed down by tasks that are run by the system or
by other users�

Three policies of task allocation are possible depending on when the allocation and
the number of tasks are determined� If they are both determined and �xed at compile
time by the programmer� the task mapping is static� If they can be changed at run�time
the allocation is adaptive� and if the number of tasks is �xed at compile time while the
allocation is changed at run�time� it is dynamic ����� In the two latter cases� a load
balancing algorithm is necessary to allocate the tasks at run�time� If it is called several
times to update the mapping during the execution� it is dynamic ����� Dynamic load bal�
ancing is necessary for programs that run tasks of heterogeneous and unpredictable size�
In some particular cases a static allocation is su�cient� For example� if a homogeneous
cluster of workstations is dedicated to a single user� the task mapping allocates to each
PE a task of the same size �i�e�� with the same amount of computation to process�� The
mapping of several tasks on a same PE is time consuming� So if the number of tasks is
greater than the number of PEs� tasks can be merged�� into larger ones in order to speed
up the program� This is especially true when the tasks access the same data that can
then be loaded only once on each PE�

����� Classical parallel algorithm models

Parallel algorithms are often the result of the same approaches and thus follow the same
schemes� This section presents the classical models necessary to describe most of par�
allel algorithms� These models are not mutually exclusive and are often merged when
designing a single parallel algorithm�

Pipeline model

Historically� the pipeline was used early as a parallel model� It is now part of the VLSI
technology and is rather considered as an indispensable technique for speeding up any

��This requires that the dependencies between the tasks are satis�ed in the resulting task�

���� PARALLEL COMPUTING ��

part of hardware �or software� than as a parallelization method� It is the application of
a simple observation� if an algorithm A can be expressed as�� Ak � � � � �A� �A� then for
i � ��� k � �� the result of Ai is used as input for Ai��� In that case� if each Ai is run
on a remote PE i then the result available on PE i can be useful for the next PE �i$ ��
to begin its work� In practice� a pipeline can be represented as a computation chain
linked by communication channels that are used to send data
ow or control instructions
from PE i to PE �i $ �� �see Figure ����� These channels are not necessarily physical
channels but may be simulated via a shared data space �memory or �le system� that can
be accessed by all PEs�

PE � PE � PE �

Figure ���� A pipeline approach� Arrows show communications between PEs�

The aim is that all PEs be busy simultaneously as long as possible� Let us suppose
that n data sets must be processed on a pipeline with k stages� Once the k �rst data
sets are loaded in the pipeline� PE i processes data set j while PE i $ � processes data
set j � �� A speed�up of up to

S
maximum

on pipeline
!

nk

k $ n� �
�����

can be gained� It tends toward k when when n tends to in�nity� hence a good e�ciency
when many data sets are to be processed�

Partitioning model

The partitioning model ���� consists in sharing the computation among PEs� unlike the
pipeline model in which PEs assume di	erent duties� Each PE processes a part of the
problem that is divided into subproblems� Sub�solutions are combined to produce the
�nal results� Such a model implies thus a minimum of synchronization among PEs�

Asynchronous model

Asynchronous algorithms �also called relaxed algorithm ����� are characterized by the
ability of PEs to process the most recent available data without waiting for each other�
This is only possible on MIMD computers� The expected e�ciency is usually better than
that of algorithms that need to synchronize their PEs� A drawback is the complexity of
designing and implementing such a model when parallelizing algorithms that are given
in synchronized form� It is in fact rarely possible and fully new asynchronous algorithms
inspired by given synchronous ones are usually proposed�

��Notation
 A� � A
 � A��A
��

�� CHAPTER �� STATE OF THE ART

Farmer�worker model��

A classical way to parallelize an algorithm is to give the control of the algorithm to a
single PE� called the farmer� and to let it distribute the computation among the other
PEs� called the workers� Figure ��� shows such a farmer�worker approach� Since the
control and the data processing are separated� this approach is quite easy to implement�
and it is robust as long as the farmer PE is not involved in a crash� Moreover� the
centralized control of the algorithm makes the task mapping less tricky than in the
general framework� The worker PEs can thus be fairly loaded and have a good chance to
�nish after an equivalent amount of time� However� a bottleneck is often di�cult to avoid
when a lot of worker PEs exchange information simultaneously with the unique farmer
PE�

Farmer

Worker � Worker � Worker � Worker �

Figure ���� A farmer�worker approach� Arrows show communications between PEs�

��� Classi�cation of parallel EAs

An attempt of classi�cation for parallel EAs was introduced by F� Ho	meister in ����� It
classi�es parallel ESs and GAs into six categories deduced from the following two criteria�

�� The synchronization �named �interaction scheme� in ������ Synchronous �S� or
Asynchronous �A��

�� The parallel model �named �extent of recombination and selection� in ������ Mas�
ter�Slave �MS�� Parallel Populations �PP�� or Parallel Individuals �PI��

It also classi�es sequential GAs and ESs that are split into two categories� synchronous
and asynchronous���

Ho	meister�s classi�cation confounds parallel EAs based on a distributed population
with hybrid island�based EAs� the PP category includes all of them� The population
of a parallel EA can indeed be distributed on remote PEs� hence a set of distributed
sub�populations that could be considered as islands� However� this set of sub�populations

��This model was originally known as the master�slave model and was recently renamed in order to
be politically correct�

��The meaning of a sequential asynchronous algorithm is however not explained and seems to be a
mistake�

���� CLASSIFICATION OF PARALLEL EAS ��

models a single population in the algorithmic sense while the islands of an island�based
EA evolve independently and cooperate� The choice of using one population or several
islands and the choice of distributing a population for parallelization reasons should thus
be distinguished clearly�

In fact� misuses of language are frequent in the literature� For example� the term
Parallel Genetic Algorithm
PGA
 ���� ��� is often used in order to actually refer to
Island�based Genetic Algorithm �IGA�� The term distributed genetic algorithm ��� ��� is
also often used to refer to IGA�

The implementation issues described in the Talbi�s taxonomy �cf� Section ������ give
the list of characteristics that are required by its classi�cation scheme in order to describe
a parallel algorithm� the task mapping �static� dynamic� or adaptive�� the computer
architecture �SIMD or MIMD�� the memory architecture �shared or distributed� and
the PE homogeneity �homogeneous or heterogeneous�� These issues give thus a concise
way to describe the implementation properties of hybrid meta�heuristics �on sequential�
parallel or speci�c computers�� They represent the main choices that must be made to
give a backbone of a parallel meta�heuristic and are among the �rst criteria to set when
parallelizing an EA�

�� CHAPTER �� STATE OF THE ART

I am always doing that which I can not do�
in order that I may learn how to do it�

Pablo Picasso� artist
���������

Chapter �

Evolutionary algorithm mechanisms

This chapter enumerates the main ingredients that characterize evolutionary algorithms
and presents a classi�cation tool based on these ingredients� The use of this tool is
illustrated with classical EAs at the end of the chapter�

��� The need for a proper parallelization

Section ��� showed that EAs are all characterized by the ability to explore several regions
of a search space concurrently and that this ability is due to the evolution of several almost
independent individuals �also called ants� candidates� solutions� etc��� The number of
regions that are simultaneously explored by an EA is tied to the number of its individuals
and many individuals are thus usually required to achieve a �good� �i�e�� wide enough�
exploration� Since the management of many individuals is highly time and memory
consuming� and since the amount of independent processing required for the evolution of
individuals suggests an intrinsic parallelism� parallel versions of EAs are of great interest�
However EAs cannot all be e�ciently parallelized in the same way because each of them
uses its own mechanisms� that is why the study of the parallelization of EAs appears to
be an appealing challenge� The goal of the next section is to identify the mechanisms of
EAs in order to give speci�c rules for their parallelization�

��� An original taxonomy of EAs�

����� Motivation for parallelization

The multitude of di	erent algorithms classi�ed as EAs and their sometimes unclear de��
nitions prevent us from giving any general parallelization rule and it is thus necessary to
identify the fundamental ingredients of such algorithms�

�The content of this section is a joint work published in ���� and ���� with little modi�cations� The
�rst version of this taxonomy was presented at ismp�� �����

��

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

This section presents an attempt to classify EAs� It shows how they can be described
in a concise� yet comprehensive and accurate way� First� the fundamental ingredients of
EAs are identi�ed and explained� Second� these ingredients are interpreted at di	erent
abstraction levels� Then� a new classi�cation scheme relying on a table� called the Table of
Evolutionary Algorithms �TEA�� is introduced� It distinguishes between di	erent classes
of EAs by enumerating their fundamental ingredients� Finally� possible uses of the TEA

are illustrated on typical EAs�

����� Background

At the beginning of EA history� there was no ambiguity about what GAs were �����
Later� however� di	erent ingredients were added to enhance GAs� performances� leading
to algorithms which substantially di	er from their original principles ���� ���� These
algorithms are still often named GAs� Moreover� it is common to �nd a GA described
with the same pseudo�code as an EA in the literature ����� Although the di	erence
between these two classes of algorithms is usually explained� it seems that the distinction
is often not clear� One of the risks such a situation leads to is that identical things are
made several times under di	erent names� This is the reason why� despite the existing
ad�hoc tutorials� a systematic means of describing the main ingredients of EAs in a
short�hand way is a challenging task to investigate�

An example of the above mentioned risk is given by scatter search and GAs� As
explained in ����� a number of evolutions of GAs used for solving optimization problems
were basic elements of the initial scatter search framework� and have therefore been
�rediscovered��

The literature very often focuses on the e�ciency� or the utility� of some kind of
operators� For example� many articles compare the use of di	erent crossover operators
in a GA �classical one�point crossover� multi�point crossover ����� uniform crossover �����
etc��� The important points concerning the structure of the algorithms are then too
often ignored� This could be schematized by saying that the interest is more in the
implementation of the EAs than in the mechanisms of the algorithms themselves� For
example� in order to understand the �philosophy� of an algorithm� the fact of using or
not using a mutation operator in a GA may appear more important than the way it is
actually done in a particular implementation�

����� Main ingredients of an EA

Population

The population being the primary source of the exploration mechanism in EAs� its size
can be viewed as a measurement of exploration capacity� The population size is thus an
important ingredient of an EA that can either be constant or change during the evolution�
Individuals that exchange information in an EA are called the parents and newly created
or modi�ed individuals are called the o�spring� The exchange of information is realized

���� AN ORIGINAL TAXONOMY OF EAS ��

by operators that usually depend on the considered EA� For example in GA� this is done
by the crossover operator �cf� Section ������� O	spring are created using information
coming from several individuals present in the current population� The number of parents
participating in the creation of an o	spring is an important ingredient of an EA since
it de�nes how much information is merged at once� For example� in GAs the number
of parents is constant and equal to �� but there exist other EAs in which the number of
parents can vary during the execution of the algorithm�

In addition to the parents� the creation of the o	spring may also use some global
information about the history of the population� This information represents the context
in which the algorithm evolves� and is called history of the population� This context
is generally handled by the population� and is updated with respect to the past of the
population� The term history of the population includes information� taking into account
the evolution� that cannot be gathered by looking at the current state of the population�
but would need the historical account of the last generations� An example for this is the
trails handled in ASs� Another example would be given by GAs in which the probability
that is associated with each operator would be updated by taking into account the results
obtained during the last couple of generations�

The frequency of use of the information sources �called exchange rate� is also an
important feature since it determines the amount of information exchanged on average�
For example� if a little information is exchanged often or if a lot is exchanged rarely� the
global exchange of information is in the same range�

The information sources of an o	spring are described by three ingredients� the number
of parents� the history of the population �noted hPopulation�� and the exchange rate�

Neighborhood

An important feature concerning the exchange of information between individuals is the
limitation of the number of individuals which are allowed to make exchanges� To answer
that question� a neighborhood function� N � P � P�P � can be set for the population P �
The neighborhood function associates to each individual e a subset N �e� of P called its
neighborhood�

An operator that is applied to an individual e � P can then only choose another
individual taken from N �e�� This neighborhood function can take the form of a directed
graph� a vertex is associated with each individual and an arc from an individual i� to an
individual i� is introduced if i� � N �i��� In some case individuals are not aware of each
other �i�e�� they do not exchange information explicitly� P is then unstructured� In every
other case� a population can be viewed as a connected set of individuals that de�nes a
structured space �i�e�� a topology�� If the operator can be applied to any combination of
individuals �as in the classical GA� then the structure of the space is a complete graph�
�e � P�N �e� � feg ! P �

If an operator is applied to more than two individuals at once� the same neighborhood

�P�P � is the set of the subsets of P �

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

function can be used� The only supplementary requirement is a given order in which these
individuals must be chosen� For example� whether they must all be in the neighborhood
of the �rst one� or each one must be in the neighborhood of the last individual that was
chosen� or any other rule�

Individual history

As explained at the beginning of this section �page ���� information about the history of
the population may be stored during the run of the algorithm� A similar information may
exist at the individual level� each individual has some evolving information that does not
concern the problem being solved but how the individual behaves in a certain situation
�what is its mutation rate for example�� This information is the history at an individual
level� called history of the individual� and is noted hIndividual� Here again� the history covers
information that cannot be determined by the current state of the individual� but would
need a description of its state during the previous generations� Notice that this notion
also applies to a generational replacement algorithm� Indeed� the history of a newly
created individual is then de�ned on the basis of the history of its parents� An example
of such a history is given by ES �cf� Section �������

Evolution of a population

Usually� the evolution of the population is achieved through a succession of evolution
steps called generations� If the whole population can be changed from one generation
to another�� an evolution step is said to be a generational replacement � If only a part
of the population is changed from one generation to another� the evolution is said to be
steady state� With the use of parallel programming for the EAs� asynchronous evolution
has appeared� In this last case� each individual is continuously changed without checking
whether the others are also changed� For example in an asynchronous GA� the next
individual that is to be replaced by an o	spring can still be used between the beginning
and the end of the creation of the o	spring�

Solution encoding

There exist many ways to encode individuals� Even if chromosome�like strings are of�
ten used� the encoding method is mainly determined by the information that should be
treated �i�e�� exchanged� improved� modi�ed� etc�� by individuals� The kind of informa�
tion that is exchanged is on a higher level� whereas the way to do it �a crossover operator
description� for example� may be considered on a lower level� The information exchange
operator� and its coding� will be determined on the basis of the kind of information that
has to be exchanged� However the kind of information to exchange in order to have
an e�cient EA depends on the problem considered� Indeed� once one has decided what
information is important to exchange� the basic blocks of information� one can choose

�With the possible exception of one or two individuals of the population�

���� AN ORIGINAL TAXONOMY OF EAS ��

any encoding method and design the information exchange operator with respect to this
encoding and the information blocks� Of course� the choice of an encoding together with
an operator that exchanges information may be very ine�cient on a computer� but the
choice of this pair is only an implementation issue� Since encoding is highly problem�
dependent�� this feature will not be included in this general descriptive TEA�

For example� let us take a real valued vector v that represents a colored graph ��i� c�i�
represents the color index of vertex i�� and let us take an individual indiv whose genotype
is encoded by v� Let us de�ne now a mutation operator M that changes the value of a
vector component at random� The fact that the color of a vertex of the colored graph
represented by indiv is changed by mutating it withMmust not be seen as a consequence
of the vectorial encoding� It is in fact an algorithmic choice� an appropriate operatorM�

can be designed to have the same e	ect on any individual whose genotype represents a
colored graph whatever the encoding is�

Nevertheless� the encoding method has an impact on the behavior of an algorithm�
It is important to describe these e	ects� Depending on the encoding method and the
information exchange mechanism� newly created or modi�ed individuals can represent
infeasible solutions� An infeasible solution is a candidate that is not a solution to the
considered problem� It should be noticed that some EAs can� by using convenient en�
coding and information exchange� avoid the creation of infeasible solutions� Individuals
representing infeasible solutions can be killed� repaired� or penalized� Individuals are killed
when they are deleted� or replaced by other new individuals� Individuals are repaired
when they are transformed so as to represent a solution to the problem �no improvement
of the solution is expected by the transformation� only its feasibility is concerned�� When
an individual is penalized� its �tness value acquires a penalty that can depend on the
distance between the candidate represented and a feasible solution�

Individual improving

A way to bring signi�cant improvements in the results obtained by an EA is to use local
heuristic techniques such as hill�climbing or tabu search at some stage of the computa�
tion ����� An improving algorithm is any change applied to a single individual� without
using information of other individuals� in order to improve its �tness value� The improv�
ing algorithm can be a simple operation or a more sophisticated combinatorial algorithm
�e�g�� tabu search� simulated annealing�� In the latter case the global algorithm is said to
be hybrid�

Noise

One of the major problems encountered with combinatorial algorithms is the premature
convergence of the solution towards a local optimum� In order to steer individuals away
from local optima or some more complex regions of attraction� EAs introduce some
noise �or randomization� in the population� This noise can be generated by randomly

�But it could be introduced in a problem�speci�c table for EAs�

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

perturbing some individuals� as the mutation operator does in a GA for example� The
only requirement is that this noise has unexpected results on the �tness of an individual�
in the sense that it does not necessarily improve it�

����� The basic TEA

In order to be aware of the principles of an EA compared to another EA� the ingredients
that characterize them must be easily readable� The creation of a one�row table that
allows such comparisons is therefore proposed� the TEA �Table of Evolutionary Algo�
rithms�� The main idea of the TEA is to have one column per ingredient developed in
this section� In each cell� an entry� that can be a number or abbreviated information�
gives the necessary indication for the corresponding criteria� Table ��� shows such a table
whose cells are �lled as follows�

jP
op
u
la
ti
on
j
�
cs
t

st
ru
ct
u
re
d

p
op
u
la
ti
on

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le

h
In
d
iv
id
u
a
l

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

�
� ��� ��� ��� ��� ��� ��� ���

Table ���� The basic TEA

���� A 'Yes� or a 'No�� depending whether the size of the population is constant� A size
range can be written instead of the 'Yes�� if it is constant�

���� A 'Yes� or a 'No�� depending whether the population is structured� Classical topolo�
gies can be written instead of the 'Yes�� ring� grid� torus� hcube �hypercube� and
compl �complete graph��

���� The number of parents for each o	spring �nothing if this number is not �xed�� The
abbreviation hPopulation can be added if the history of the population is used� If the
information is not entirely exchanged at each generation between every parent� an
exchange rate can be added into brackets� for example� ����� means that individuals
exchange information every two generations� or that only half of them exchange
information at each generation in average� or even that they exchange only half of
their information�

���� AN ORIGINAL TAXONOMY OF EAS ��

���� One of the four abbreviations� nvr �when infeasible individuals can never appear��
pen �when the infeasible individuals are penalized�� rep �when the infeasible indi�
viduals are repaired� or die �when the infeasible individuals are killed��

���� A 'Yes� or a 'No�� depending if the history of the individuals is used by the algorithm�

���� A 'Yes� or a 'No�� depending if an improving algorithm is applied to the individuals
or not�

���� A 'Yes� or a 'No�� depending if noise is used or not�

���� One of the three abbreviations� gr �when generational replacement is used�� ss �when
steady state is used� or as �when asynchronous mode is used��

The TEA does not provide� nor does it replace� algorithm pseudo�codes� It merely
informs about the algorithm�s key elements� The primary goal of the TEA is to compare
the principles of EAs� as opposed to comparing their performances� It should never be
forgotten that its aim is not to explain the details of a given algorithm� It may however
be used to describe algorithm classes� or to compare the characteristics of two algorithms
a priori considered to be di	erent�

For a �rst example� the very simple genetic algorithm described by Algorithm � at
page �� is used� The basic TEA associated with this algorithm is shown in Table ����

jP
op
u
la
ti
on
j
�
cs
t

st
ru
ct
u
re
d

p
op
u
la
ti
on

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le

h
In
d
iv
id
u
a
l

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Yes compl ��pc� nvr No No Yes gr

Table ���� The basic TEA for a standard genetic algorithm

����� Hierarchical ingredients

Further description levels

Ingredients that were described in the previous section concern one population of indi�
viduals� Some other description levels may however be considered� in order to describe
several populations� or even sets of populations� This section shows how the notions
explained in ����� can be understood at other description levels�

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

Usually� the notion of parents is only used when a new individual is created by com�
bining information of other individuals� However� this notion can be generalized to any
exchange of information� For example� consider the case where several populations �or
islands� are used� An island obtained by selecting a collection of individuals from two
islands I� and I� can be considered as the o	spring of the parent islands I� and I��

In fact� most of the ingredients of the previous section remain correct if �individual� is
replaced by �island�� With this in mind� the previous section can describe another level
of an algorithm using islands� In order to look at an EA in this manner� one must de�ne
an element e and a set S of such elements at each level� At a given level� the EA works
on a homogeneous set of elements e� Let us take an island�based GA �IGA� as example
�cf� Section ������� An IGA inspired by the standard GA described in Algorithm � is given
by Algorithm �� The islands are virtually positioned on an oriented ring� and migrations
are only allowed along that ring� Every time a new generation is computed� a copy of the
best individual �i�e�� with the greatest �tness value� ever met by each island is sent to
the next island on the ring� Each island thus receives a new individual that replaces one
of its individuals selected randomly �another policy would be to replace the individual
with the lowest �tness value��

Algorithm

�� island�based genetic algorithm �IGA� ��
�� determine k initial islands �P �� � � � � P k���
�� generation count � �
�� repeat
�� generation count � generation count $�
�� for each island i
�� while P i

intermediate not full do
�� select indi� and indi� in P i

�� �o	sp�� o	sp�� � crossover�indi�� indi��
�� put o	sp� and o	sp� in P i

intermediate

��� mutate each individual in P i
intermediate

��� P i � P i
intermediate

��� if generation count is multiple of m
��� then the best individual of each island P i migrates to P �i���mod k

��� until termination condition is met

At the lowest level� in such an algorithm an element e is an individual� Individuals are
grouped to form islands �the sets S�� Since the IGA works on each island independently�
let us consider a level where an element e is an island �the set S of the previous level�
and where these islands are grouped to form an archipelago �the new set S�� In the case
of the IGA� only one archipelago is considered� but a process that clusters archipelagi
into meta�archipelagi could be imagined� In such a case� the same reasoning as for
the previous level can be applied� Therefore� the previous section remains valid almost
without modi�cation for all levels� Figure ��� gives an example of the use of structured

���� AN ORIGINAL TAXONOMY OF EAS ��

spaces for a population and for an archipelago� In the IGA case� the information exchange
operator� corresponding to the crossover operator at the individual level� can be migration
at the island level� as mentioned above� A de�nition for the ��tness value� of an island
can be the mean �tness value of the individuals in this island� Thus� an improving
algorithm can improve this mean �tness value �without using the other islands�� The
only ingredient of the previous section that cannot be easily generalized to an upper
level� is the feasibility of an element� it is not clear what an infeasible island can be� But
the possibility is left for a suitable de�nition needed in future developed EAs�

In an
archipelago

of populations

�or islands�

In a
population

of individuals

Complete graph topology Grid topology

An individual

A link allowing

the exchange

of information

A population

of individuals

Legend�

Figure ���� Structured spaces de�ned by individuals in a population and by islands in an
archipelago� In this example� a complete graph and a grid topology are chosen to structure
the space�

Even if they do not exist yet� EAs can be imagined with even more levels� The
IGA can for example be extended to a three�level algorithm� an archipelago�model GA�
in which there are several archipelagi� Algorithms with more than two levels do not
necessarily give better results� but they can enter in the above described framework�

Since� as explained in ������ an individual represents a candidate to the problem
instance considered� the individual level can be seen as the basic level of an EA� The
level in which an element is a set of individuals can be seen as a level above this basic
level� More generally� if the elements e of a given level l are more elaborate than the
elements e� of a level l�� the level l can be considered as being higher than l�� If the
elements e� � S � are direct components of the elements e� then e ! S � and l� ! l $ ��

The classi�cation table

Let us see now the complete classi�cation table� based on the basic TEA introduced
in ������ In this extended table� one row is �lled per description level� An additionnal
column is inserted on the left side in order to name the description level of each row�
Table ��� shows such a table with two description levels�

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

��� �
� ��� ��� ��� ��� ��� ��� ���

Table ���� TEA� the table for evolutionary algorithm classi�cation

Column ��� names a description level by making explicit the set S of elements e
concerned in the corresponding row� For example� at the lower level in a IGA� �Is�
land�Individual�� would mean that in the �rst row the elements e are the �Individuals�
grouped into �Islands��

The TEA is �lled as explained in ����� for the basic TEA� except that sets and elements
are now considered instead of populations and individuals� For example� columns ����
���� and ��� are now �lled with�

��� A 'Yes� or a 'No�� depending if the set S is structured or not� Classical topologies
can be written instead of the 'Yes�� ring� grid� torus� hcube �hypercube�� and compl
�complete graph��

��� The number of parents for each o	spring �nothing if this number is not �xed�� The
abbreviation hS is added to the number if the history of the set S is used�

��� A 'Yes� or a 'No�� depending if the history he of the elements e is used by the
algorithm�

In the case the corresponding ingredient has no sense at a given level� a cell contains
the character '��� It should be rare�

In standard EAs� the one�to�one relation holds between the levels of the algorithm
and the rows of the table� But the TEA is more
exible� several rows are possible for a
given level� For example� two di	erent types of islands can be used and can be described
by a row named �Island��Individual�� and a row named �Island��Individual��� grouped
with �Archipelago�Island�� Island����

In order to improve the results� algorithms often use some kind of diversi�cation in
one of the ingredients� For example� one can imagine that the size of the population is
constant most of the time� but that it is decreased from time to time and then brought
back to its original value� If taken literally� one should put a 'No� in the column entitled
�jSj ! cst�� But since� the overall idea is to have a constant population� a special symbol
% �for Diversi�cation� may be associated with a 'Yes� in this column� Table ��� shows
how to describe a population whose size is decreased every now and then� How exactly
the diversi�cation is done can be commented beside the table�

���� AN ORIGINAL TAXONOMY OF EAS ��

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

� � �

Population�Individual� Yes � � � �
� The population size changes when� � �

Table ���� Example of the use of the %�feature�

A large part of the place taken by the table is due to the labeling of the columns�
Thus� a condensed version of the table was introduced here� This short version does
not contain the labels� Each row of the table can then be represented by its ingredient
pattern� that can be seen as its ��nger prints��

��� ����������������������������

where �i� is the content of cell �i�� To keep an easy reading of this compact version� the
Yes�s and the No�s are replaced by capital Y and N� The empty character that can be put
in cell ��� when the number of parents is not �xed is replaced by a ' �� The abbreviations
appearing in the cells ������� and ��� are kept in lowercase� If there is a % in a cell� it can
be put as index to the corresponding Y� N or abbreviation in this compact version� It
can be noted that the �rst two cells �in the �rst pair of square brackets� concern directly
the sets S� the next three cells concern directly the elements e� and the last three cells
�between the square brackets� are related to the evolution �policy��

����	 Examples

TEA descriptions associated to typical EAs are given as examples in this section�

Standard genetic algorithm

Let us again use Algorithm � whose TEA was presented in ������ but consider the TEA

in its �nal shape� The TEA associated with this standard genetic algorithm is shown in
Table ���� and its compact form is� Population�Individual� �Ycompl���pc�nvrN�NYgr��

Island�based genetic algorithm

The second example is a generational replacement island�based GA� that uses migration
on an oriented ring every m generations �see Algorithm � at page ���� If the �tness of
an island is de�ned as the mean �tness of the individuals in this island� then the TEA

associated with this algorithm is shown in Table ���� The Information sources noted
�����m � ��jIslandj�� means that � parents �i�e�� � islands� exchange information every m

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Population�Individual� Yes compl ��pc� nvr No No Yes gr

Table ���� TEA of a standard genetic algorithm

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Island�Individual� Yes compl ��pc� nvr No No Yes gr

Archipelago�Island� Yes ring ��
�m �
�jIslandj� � No No No gr

Table ���� TEA of an island�based genetic algorithm

generations and that the amount of information exchanged �compared to the size of an
entire island� is ��jIslandj �i�e�� one individual��

The compact form of this TEA is�

Island�Individual� �Ycompl���pc�nvrN�NYgr��
Archipelago�Island� �Yring�����m � ��jIslandj��N�NNgr��

Scatter search

The third example is the basic scatter search ���� that is summarized by Algorithm �
shown on page ��� The TEA associated with this algorithm is shown in Table ����

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Population�Point� Yes compl ���jSj rep No Yes No ss

Table ���� TEA of a basic scatter search

���� AN ORIGINAL TAXONOMY OF EAS ��

Ant system

The fourth example is an ant system� Algorithm � �page ��� gives a sketch of such
an algorithm� The corresponding TEA is shown in Table ���� Notice that the only
information source for an ant is the history of the population �called trails in ant systems��
Indeed� during the construction of a solution� an ant does not use the solutions provided
by some given ants� but uses exclusively a combination of values obtained by the whole
population during a certain number of cycles�

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Colony�Ant� Yes No � hS nvr No No No gr

Table ���� TEA of an ant system

PBIL

The last example is the Population�Based Incremental Learning �PBIL�� Its TEA shown
in Table ��� is the same as that of an ant system� The two algorithms are indeed based
on the same concepts� The only di	erences between them are�

� the possibility for ants to use visibility �i�e�� speci�c information about the problem��

� the obligation for solutions in a PBIL to be encoded as bit�strings�

� the size of the probability vector P �� in an AS� that must have the same size than
the solution vectors in a PBIL�

� the computation of P �or �� that needs only the best solutions in a PBIL �and all
ants in an AS��

PBIL could be seen as a particular case of AS� Indeed� an AS with the following con�
straints works as a PBIL�

� ants are encoded into bit�strings�

� visibility is not used �� ! ���

� the function that updates � does not take every ant into account�

This justi�es the fact that PBIL and AS have the same TEA description�

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Population�solution� Yes No � hS nvr No No No gr

Table ���� TEA of a PBIL

����
 Extensibility

The TEA has been designed in order to be extensible to yet unknown classes of EAs� It
makes explicit the hierarchical notion of �level� in EAs" therefore� the TEA can also be
helpful for the design of new classes of EAs� Indeed� by exploring many di	erent ways to
�ll out the TEA� one may discover new classes of EAs by their descriptive characterization�
In the end it should be stressed that the TEA is not a static tool� In concert with
the possible evolution of EAs� the TEA may evolve in order to take into account new
ingredients that will eventually be discovered as useful in EAs�

��� About islands and topology

Studies of parallel EAs often tackle the notion of islands and the notion of structured
space �introduced in ������� The reason is that these two notions appeared with the �rst
studies of the parallelization of GAs ���� ��� ��� ���� This section discusses them from an
algorithmic point of view by removing every reference to parallel implementations �the
relationship between these notions and parallel EAs is presented in next chapter��

����� Structured space phenomenon

As de�ned on page ��� the elements of an EA can be connected in order to restrict
their exchange of information within a given neighborhood� The topology hence de�ned
in
uences the behavior of the algorithm since it controls the information propagation
speed� The e	ects of a grid topology on a GA are observed in ����� It is shown that
species �i�e�� individuals with identical genotypes� spontaneously appear in some regions
to form small clusters� These clusters grow or shrink during the evolution according to
exchange of information �i�e�� the crossover� at the edges� An increase of the neighborhood
size results in a higher selection pressure� �i�e�� a faster convergence of the algorithm��

�When a phase of an EA requires that individuals be selected� the importance of the restrictions
on this selection phase is measured by the selection pressure� If the choice is large� the pressure is low
and the exploration of the search space is thus favored �cf� Section ����� If the choice is restricted� the
pressure is high and the exploitation of the search space is then favored�

���� ABOUT ISLANDS AND TOPOLOGY ��

����� Island phenomenon

It is observed that the execution of several independent GAs on islands �cf� Section ������
gives better results than that of one GA on a single population with the same total number
of individuals ���� ��� ���� It is also observed that an island�based GA with migration
outperforms one without migration �����

The role of migration is to exchange information from one island to another� It has
been shown that it is equivalent to the GA crossover operator at the abstraction level
of the population� The migration rate �i�e�� the quantity of individuals that migrate at
once� and migration time�scale �i�e�� the frequency of migration� determine the amount
of information exchanged between islands� If this amount is too large or too small the
performance is degraded �as observed in ������

A decrease of the population size results in a higher selection pressure �i�e�� a faster
convergence of the algorithm�� Islands permit independent evolution of several popu�
lations� hence a simultaneous almost independent exploration and exploitation of the
search space� A �rst theoretical investigation of allocation of trials to schemata by PGA
�in fact island�based GA� is given in ����� It is however not clear why an IGA evolves
towards increasingly better �tness values when the number of islands increases� A study
of the optimal number and size of islands is made in ���� for some speci�c cases �isolated
islands� perfect mixing of the information produced on each islands� etc��� According
to ���� that refers to di	erent papers� the interesting topologies are those with a medium
diameter �the ring is however presented as a good candidate in spite of its rather large
length

�
diameter��

����� Discussion

The island and the topology phenomenon is not clearly explained but some ideas can be
proposed� The study of the space structure phenomenon and of the island phenomenon
are closely tied� Indeed� they both increase the selection pressure by isolating individuals
in a neighborhood that is opened in the �rst case and closed in the second�

When an island is small� its convergence is fast and once all of its individuals are
almost identical the behavior of the EA on the island is mainly similar to that of a
traditional sequential algorithm �cf� page �� that only searches in the neighborhood of
a candidate� An island�based EA could thus be compared in a �rst approximation to a
simultaneous execution of sequential algorithms�

Let us take now a structured space of islands that contain unstructured populations�
If the number of islands is increased while the total number of individuals is kept constant�
the size of each island decreases� In the limit case� each island has one individual that
can only exchange information with the individuals on neighbor islands� It results in a
structured space of individuals that is mapped on the topology that connects islands�
This shows that the study of topology and of islands is tied�

A grouping concept whose function operates a bit di	erently from the function of is�
lands derives from creating clusters of individuals that share particular features ����� This

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

gives rise to strategies where �within cluster� operations yield forms of intensi�cation�
while �across cluster� operations yield forms of diversi�cation� The use of such clustering
can be described in the TEA in the structured S column since it can be assimilated to a
neighborhood function whose topology changes with time�

These considerations could have an important impact on the characteristics of EAs
designed in the future� However� so far� there is no proof on the properties of islands
and structured spaces� The island model has however some advantages on the structured
space model� it is less sensitive to parameter settings since it enables di	erent islands to
have di	erent parameters ���� �or even di	erent EAs��

��� An island�based genetic ant algorithm

The aim of this section is to create a new hybrid EA that will be used in the remainder�
The aim is to experiment some parallelization rules on a new EA on which there is no a
priori knowledge�

����� Motivation

GAs are rarely trapped in local optimum but they are sometimes too �blind� to �nd
good regions of the search space even when they seem easy to �nd� GAs are thus often
hybridized� with traditional heuristics in order to outperform the standard GA �dozens
of them are listed in ������ However these traditional heuristics can attract the whole
algorithm in a bad region of the search space�

In an AS� individuals �or ants� are constructed by using �pure� traditional techniques
�the visibility of ants� and evolutionary knowledge �the trails� as a source of information�
When the visibility of ants is given a high importance	� the behavior of an AS is thus
similar to that of a local search but without its drawbacks since it bene�ts from EA
properties�

The exchange of information from one individual to another is one of the main mech�
anism in GAs while the global information about the population that is gathered and
used by every individual is the heart of ASs�

The use of both mechanisms in a unique EA could be fruitful since such a hybrid
EA could have the e�ciency of a hybrid �greedy� GA� without being attracted in a bad
region of the search space� In a hybrid �greedy� GA�� the greedy�like algorithm can be
used to determine the initial population of the GA� to improve its �nal population� or to
improve its intermediate population by modifying �or replacing� some individuals at each
generation� All these approaches result in a low�level hybridization� As mentioned in the
previous section the use of islands �a high�level co�evolution technique� often results in
EAs with good performance� This hybridization technique is thus a good alternative to

�Cf� de�nition in ������
�This is done by setting a higher value to � than to � �cf� Section �������

���� AN ISLAND�BASED GENETIC ANT ALGORITHM ��

hybridize a GA and an AS� Moreover� the resulting hybrid EA would be a good test�
candidate to study the parallelization of an atypical EA because of the many di	erent
EA ingredients
 it would use�

����� Description

The genetic ant algorithm proposed here is an island�based EA with heterogeneous is�
lands� named IGAA� It introduces no new notions but uses those of EAs discussed
previously� Each island is independent and has its own population that evolves according
to its own rules� one island contains individuals that evolve as ants in an AS �cf� Algo�
rithm �� and other islands contain individuals that evolve as in a GA �cf� Algorithm ���
Migration occurs after each generation along an oriented ring that connects the islands�
Algorithm � gives the scheme of this hybrid EA and Table ���� shows its associated TEA�
In the Talbi�s taxonomy�� it is noted HCH�GA�AS��het�glo�gen��

Algorithm

�� island�based genetic ant algorithm �IGAA� ��
�� determine k initial islands �P �� � � � � P k���
�� initialize the trails on island P �

�� generation count � �
�� repeat
�� generation count � generation count $�
�� for each island i
�� if i ! �
�� then �� island is P �� the evolution is based on an AS ��
�� for each individual �or ant�
��� construct a solution using trails and visibility
��� update the trails
��� else �� island is P i with i �! �� the evolution is based on a GA ��
��� while P i

intermediate not full
��� select indi� and indi� in P i

��� �o	sp�� o	sp�� � crossover�indi�� indi��
��� put o	sp� and o	sp� in P i

intermediate

��� mutate each individual in P i
intermediate

��� P i � P i
intermediate

��� the best individual of each island P i migrates to P �i���mod k

��� until termination condition is met

The parallelization of this algorithm is presented in ������ It is then used for experi�
ments and the results obtained are discussed in Sections ��� and ����

�EA ingredients are introduced at the beginning of the present chapter�
	Cf� Section ������

�� CHAPTER �� EVOLUTIONARY ALGORITHM MECHANISMS

S
�e
�
S
et
of

el
em
en
ts
e

jS
j
�
cs
t

st
ru
ct
u
re
d
S

in
fo
rm
at
io
n

so
u
rc
es

in
fe
as
ib
le
e

h
e

im
p
ro
v
in
g

al
go
ri
th
m

n
oi
se

ev
ol
u
ti
on

Population�Individual� Yes compl ��pc� nvr No No Yes gr

Colony�Ant� Yes No � hS nvr No No No gr

Archipelago�Population�Colony� Yes ring �� �
jPopulationj� � No No No gr

Table ����� TEA of IGAA

A common mistake people make
when trying to design something

completely foolproof is to underestimate
the ingenuity of complete fools�

The hitchhiker�s guide to the galaxy�
Douglas Adams
�����

Chapter �

Parallelization of evolutionary

algorithms

This chapter presents a new approach to parallel EAs based on the algorithmic ingredients
that were introduced in the previous chapter with the TEA� The aim is to parallelize
sequential EAs without changing their behavior� and thus without altering or improving
the quality of their results�

A notation for the granularity of parallel EAs is introduced and parallelization rules
are given by interpreting the TEA ingredients� These rules make it easier to parallelize
any given EA� Three EAs are then taken as examples and parallelized� Finally an object�
oriented library is designed� It will permit to implement the resulting parallel EAs in
order to validate the parallelization rules�

��� Parallelization analysis

The parallelization of an EA �rst requires to identify independent tasks that can poten�
tially execute simultaneously� in order to distribute them on di	erent PEs� The analysis
of the dependencies between the tasks and of the amount of communication they need to
exchange gives some hints on the way to parallelize the algorithm� A compromise must
then be found between a maximization of the number of tasks and a minimization of the
overhead due to the parallelization �because of communications� synchronizations� etc���
This section lists di	erent parallelization rules that can be induced from the characteris�
tics of EAs listed in the previous chapter� It can be noted that these rules are thus only
based on algorithmic characteristics and should apply for any combinatorial optimization
problem� The parallelization rules are �nally applied to three di	erent sample EAs�

Choices have to be made concerning the parallel architecture� the granularity� the
communication load� and the parallel algorithm model�

��

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

����� The architectural choice

SIMD computers imply a synchronous behavior� They usually have small memories on
each PE and they are almost not considered anymore by supercomputer vendors� MIMD
computers� that are more and more available� are thus preferred as target platforms for
the parallel algorithms that are discussed further on� SIMD computers can however have
some advantages in speci�c cases that will be mentioned when necessary�

Shared memory architectures are supposed to solve all the data allocation problems
at system or hardware level �cf� Section ������� The aim is to free programmers of any
complex message passing problem� Nevertheless� in practice they are less
exible than
distributed memory architectures because memory access is exclusively controlled by
the system and the hardware� memory is usually physically distributed �hence possible
memory contention�� memory accesses might be sequentialized in some cases� etc� MIMD�
DM computers are thus chosen in order to study the parallelization of EAs because of their

exibility �they can simulate other architectures if necessary� and increasing availability
�cf� Section �������

PRAM ���� and BSP ����� models are well�known theoretical parallel programming
model� Their main objective is to give a formal framework to parallel programmers� but
they do not exactly correspond to any existing parallel computer� Therefore� none of
these theoretical models are chosen for the present work� Instead� a virtual MIMD�DM
computer with p PEs mapped on a given topology is taken as a basis for the study�

The operating system of MIMD�DM computers is usually multi�tasking� that is� many
tasks can be executed on a single PE� In the framework of this work� the e�ciency of
parallel programs is measured experimentally by executing them on parallel computers�
Running several tasks on one PE is thus not consistent with such a study� Consequently�
for the sake of clarity� in the remainder of this chapter it is always assumed that each PE
runs a single task�

����� Levels of parallelization

The granularity of a parallel algorithm is usually only labeled as coarse or �ne �cf� page ����
The level of parallelization introduced here formalizes this notion and makes it possible
to quantify it more precisely in the case of evolutionary algorithms�

De�nition� A level of parallelization describes the granularity of a parallel EA with
an EA element� the size of the largest indivisible �i�e�� not partitioned�
element that is handled on PEs determines the level of parallelization of
a parallel EA �e�g�� an individual or a population��

This concept makes it possible� among other things� to compare the granularity of
di	erent parallel EAs�

���� PARALLELIZATION ANALYSIS ��

Level Element handled by each PE Size x of each element Notation

encoding element � encoding part x � ��� jindividualj � �� L���x�
individual � sub�population x � ��� jpopulationj � �� L��x�
population � subset of archipelago x � ��� jarchipelagoj � �� L��x�
archipelago � set of archipelagi � � � L��x�

� � � � � � � � � Li�x�

Table ���� Di�erent levels of parallelization in EAs�

Notation

Table ��� gives the list of di	erent levels of parallelization that can be obtained depending
on the choice of the indivisible elements that are distributed on PEs� The table also
proposes a notation to name and order these levels� L��x��

When only the level of parallelization is concerned� it is possible to mention level
L� without any precision on the size of each element� It permits to give an idea of the
parallelization without giving the exact distribution� For example� if an algorithm is
parallelized at level L�� each PE handles a sub�population whose size is in the range
��� jpopulationj � ��� Such a sub�population is a subset of the whole population�

An order can be de�ned by assigning low levels to �ne�grain parallelism and high
levels to coarse�grain parallelism�

�i� j � ������� �x� y � f�g � ������ Li�x� � Lj�y� ��

������
�����

i � j and y �! �
or
i ! j and x � y
or
x ! �

�����

�i� j � ������� �x� y � f�g � ������ Li�x� ! Lj�y� ��
��
�

i ! j and x ! y
or
x ! y ! �

�����

The notation L���� is necessary for the consistency of the formulae that will follow�
It represents the granularity of the void algorithm� This level is noted L� ! L����� ���

Level constraints

The number of rows �i�e�� description levels� in the TEA of an EA gives some information
on the level range in which the parallelization can be done�

The level of parallelization of a sequential EA has no meaning in terms of parallelism�
However the notation can be used to refer to the main EA entity �i�e�� most global set S�
that evolves in a sequential EA� a population� an archipelago� etc� By de�nition� the
number of main entities is trivially � so the level of parallelization of a sequential EA
must be L���� where � � � is the number of �algorithmic� description levels of the

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

algorithm �i�e�� the number of rows of its TEA description generally��� The smallest
element �according to the de�nition given in Section ���� that is handled by an EA is
a population� Consequently� the lowest level of parallelization that a sequential EA can
have is L�����

The notation can be extended to de�ne a level of parallelization range� Such a range
can be useful to give a succinct yet precise description of the possible parallelization levels
in which the parallelization of an EA can be investigated�

For example� if it is set that an EAA of level L���� must be parallelized by partitioning
its main population of size jpopulationj into sub�populations with at least two individuals�
this information can simply be noted A��� �L����� L����� ! �L����� L��jpopulationj � ����
where A�� is the parallel version of A�

If an algorithm describes the evolution of a single population �as the classical GA
does�� it cannot handle several populations once it has been parallelized because its
behavior must be left unchanged by the parallelization� More generally� a parallel algo�
rithm always has a strictly lower level of parallelization �in the sense of Equation ����
than its original sequential version� For example� the sequential version of the classical
GA has a parallelization level of L����� thus it cannot be parallelized at a level higher
than L��jpopulationj � ��� In fact if we assume that the population is fairly partitioned
into parts of similar size �without partitioning any individual�� then each sub�population

has
l
jpopulationj

p

m
or
j
jpopulationj

p

k
individuals� The highest level of parallelization is thus

L�

�l
jpopulationj

p

m�
with p � ��

In�uence of the levels

Parallelization level L�� implies a �ne�grain parallelism approach that is often too �ne to
be e�ciently implemented on MIMD computers� For example� if each PE handles only
a single part of an individual� then the number of necessary PEs is high� Moreover� the
expected communication load necessary to maintain the consistency of partitioned indi�
viduals is likely to be huge� Another possible parallelization whose level is L�� consists
in assigning the same part of every individual to a given PE� For example� if individuals�
genotypes are bit�strings� then a given PE could be responsible for a given bit of every
individual �i�e�� PE (� would be in charge of the �th bit of each bit�string�� Once again
the number of necessary PEs and the communication load are high� Such �ne�grain par�
allelizations should only be investigated for SIMD computer implementations� Moreover�
the encoding of individuals� genotypes must be known in advance in order to distribute
parts of individuals� The latter requirement does not depend on the algorithm� and thus
a parallelization level L�� will not be considered when parallelizing an EA in a general
framework �i�e�� that only depends on the algorithm��

Parallelization level L� is the most intuitive since it corresponds to the partitioning

�Since a given level might be described by several rows in the TEA� this is not always true �cf� page ����

���� PARALLELIZATION ANALYSIS ��

of a population �that is� the main entity of any original EA� into sub�populations� Such
a partitioning requires that the information about the whole population be kept consis�
tent� hence a likely high communication load� Such a parallelization is called a global
parallelization in �����

Parallelization level L� is the most popular in the literature because it is the easiest to
implement� The idea is to run an original sequential EA on independent populations �or
islands�� A simple implementation of a parallel EA of level L� is straightforward� each
PE handles a remote island and runs the sequential EA locally �on the condition that the
number of individuals is at least twice greater than the number of PEs� Otherwise islands
with one individual are considered as individuals� hence a level L��� L� also includes more
complex designs that permit to have more islands than PEs� Sub�populations that are
part of a single population must not be mixed up with independent islands since they do
not evolve according to the same algorithm�

A parallelization level L�� � � � was not found in the literature since no EA with
several archipelagi are currently being used�

Distribution of heterogeneous EA entities over several PEs� operator ��

A level of parallelization Li�x� cannot describe parallel approaches in which the distri�
bution of EA entities is heterogeneous �e�g�� a population on a PE� and an individual on
every other PE�� Let us introduce an operator that can be used to describe such paral�
lelization approaches�

De�nition� If an EA is parallelized with a parallelization level Li�x� on some PEs
and with a parallelization level Lj�y� on some others then the resulting
parallelization level is noted with the operator ��� Li�x���Lj�y��

The order in which the di	erent levels are declared has no importance �i�e�� operator ��
is commutative��

Li�x���Lj�y� ! Lj�y���Li�x� �����

For example� if a farmer� PE handles a population while worker PEs process individuals�
the parallelization level of the algorithm is L���� from the farmer PE point of view and
L��jpopulationj��p���� with p � � from the worker PE point of view� The parallelization
level is then noted� L������L��jpopulationj��p� ���� p � �� Such a level is lower than L�

since it deals with individuals� It is however higher than L� since the whole population
is handled on one PE� By generalizing this remark� the following property can be set�

min�Li�x�� Lj�y�� � Li�x���Lj�y� � max�Li�x�� Lj�y�� �����

When the operator �� is used between two identical levels� the following simpli�cation
rule is set �this rule results from the de�nition of a level of parallelization� and it is

�Cf� Section �����

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

coherent with Equation �����
Li�x���Li�x� ! Li�x� �����

L� is a neutral element for operator ���

�i � ������� �x � ������ Li�x���L� ! Li�x� �����

Handling of heterogeneous EA entities by a PE� operator $

A level of parallelization Li�x� or Li�x���Lj�y� cannot describe parallel approaches in
which a PE handles heterogeneous EA entities �e�g�� one population and some individ�
uals�� Let us introduce an operator that can be used to describe such parallelization
approaches�

De�nition� If a PE handles heterogeneous EA entities then each of these entities
de�nes a di	erent level of parallelization� Li�x� and Lj�y� for example�
Operator $ aggregates these levels in order to describe the resulting level
of parallelization� Li�x� $ Lj�y��

For example� let us suppose that � islands of �� individuals need to be partitioned on
� PEs so that each PE handles ��� islands� The parallelization has two di	erent levels
simultaneously�

� a population level L���� �one island is distributed on each PE�� and

� an individual level L������� ! L���� �� individuals are distributed on each PE��

The level of parallelization of this parallel EA is noted� L���� $ L����� The level of
parallelization hence obtained must not be higher than L���� �i�e�� the lowest level ob�
tained if the smallest entity considered here is replaced by the largest�� Moreover� this
level of parallelization must be higher than that of the smallest entity �i�e�� L������ By
generalizing this remark� the following property can be set�

�i� j � ������� �x� y � ������ min�Li�x�� Lj�y�� � Li�x� $ Lj�y� � max�L� L��

where

����
���

L !

�
Li����� if x is the maximal size of level Li

Li�x$ �� otherwise

L� !

�
Lj����� if y is the maximal size of level Lj

Lj�y $ �� otherwise

�����

The order in which the di	erent levels are declared has no importance �i�e�� operator $
is commutative�� L� is a neutral element for operator $�

�i � ������� �x � ������ Li�x� $ L� ! Li�x� �����

Operator $ is arti�cially given a higher precedence than �� in order to avoid multiple
interpretations of a complex level written with several levels and both $ and ���

�i� j� k � ������� �x� y� z � ������ Li�x���Lj�y�$Lk�z� ! Li�x����Lj�y�$Lk�z�� �����

It is however advised to put brackets in order to improve the readability of the level�

���� PARALLELIZATION ANALYSIS ��

Simpli�cation of the notation

It often happens that the size x of a level L��x� is the result of a ratio y
z
where y and

z are some parameters of the algorithm �e�g�� number of islands� number of PEs� etc���
In that case� the level of parallelization should be written L�

	

y
z

��
��L�

	

y
z

��
because no

hypothesis can be done on the divisibility of y by z� In order to keep the notation of
levels readable� the following notation is introduced�

hy
z

i
!

��
�

y
z

�
and

y
z

� ������

and it can simply be written L�

	

y
z

��
��L�

	

y
z

��
! L�

	�
y
z

��
�

����� In�uence of the main ingredients

This section discusses the in
uence that the ingredients enumerated in Section ����� have
on the parallelization of an EA� It must not be forgotten that these ingredients have
a meaning for each row of the Table of Evolutionary Algorithms �TEA� introduced in
Section ���� That is the reason why the following rules deal with a set S of elements
e �like in Section ������ instead of a population of individuals� which would restrict the
discussion to the �rst row of the TEA� General rules are deduced for each ingredient�
They permit to study the TEA description of a given EA to �nd the most suitable
parallelization� For example� if an ingredient value implies that the partitioning of a set
S is too costly� then the possible level of parallelization range is reduced accordingly�

��� Size of S If jSj is big� then a �rst straightforward way to parallelize the algorithm

is to distribute the elements in p subsets of size
h
jSj
p

i
� If the size of the set is not constant�

an adaptive task management might be appropriate� However� if the variation is not too
important it can be controlled by just resizing the subsets at run�time�

��� Structured space �topology� If it is not possible to have a property preserving
mapping of the topology of the space of elements �cf� page ��� on that of the parallel com�
puter architecture� then there are neighbor elements that cannot be placed on neighbor
PEs� Therefore the exchange of information between two such neighbor elements requires
that messages be routed through several PEs� thus increasing the communication load�
The worst case occurs when the space of elements is completely connected �i�e�� any el�
ement can exchange information with any other�� In that case� contention problems are
to be feared and sophisticated routing algorithms are needed� because parallel computers
are usually not fully connected� Favorable cases occur when the topology of the space
can be mapped on the parallel computer architecture topology �e�g�� a ring of elements

�MIMD�DM supercomputers usually have such e�cient routing mechanisms�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

can be mapped on a torus or a hypercube architecture�� In the ideal case� elements do
not exchange information �i�e�� the space is unstructured��

When an algorithm is designed to run on a COW or a NOW� the topology of the
physical links is not always known� and the routing is transparent �i�e�� the topology
is perceived as a complete graph�� Moreover� if the algorithm needs to be portable
on many di	erent machines a strong hypothesis on the architecture topology should be
avoided� Communications can then hardly be optimized by assuming a given topology� It
is however more advisable to parallelize an EA at a level whose space is as unstructured
as possible since it at least reduces the risk of contention� and since it simpli�es the
communication control�

��� Information sources �history of S� number of parents and exchange rate�
If the set S is partitioned on several PEs and if its history is used as an information
source� then this history has to be kept consistent and each PE must be able to access it
when necessary� The cost of this requirement is high in terms of communication� whatever
technique is used to satisfy it �gathering of the information on a farmer PE� or gossiping
of the information by PEs�� Moreover� the history changes at each generation �or even
more frequently�� potentially increasing the communication load� Consequently� if the
history of the set S is used as an information source� the set should be kept as a single
entity as much as possible�

The potential amount of communication necessary to retrieve the information required
by o	springs is proportional to the number of their parents� the amount of information
exchanged by these parents� and the frequency of these exchanges �e�g�� the number of
o	springs created per generation�� This potential communication load is thus represented
by the number of parents and the exchange rate�� If these values are low� a partitioning
of the set S is recommended� it is not advised otherwise�

��� Infeasible solution The way infeasible candidates are dealt with is only of al�
gorithmic concern� It does not in
uence the choices to be made when parallelizing an
EA�

��� Element history If a history is associated with each element� the information that
models an element is larger� The communication load of a parallel algorithm that needs
to exchange such elements is then increased in the same proportion�

��� Improving algorithm An improving algorithm is usually applied on all elements
at the same time� It is thus a good source of parallelism� A farmer�worker approach
is well suited to quicken the improvement phase of the algorithm� However� it must
be checked if the communication load is not too important compared to the amount of
computation needed by the improving algorithm to process it� In other words� the size

�Cf� page �� for the de�nition of these parameters and page �� for an example of their interpretation
when the set S is an island�

���� PARALLELIZATION ANALYSIS ��

of the elements must not be too important compared to the complexity of the improving
algorithm� otherwise it is better not to parallelize this part of the EA�

�
� Noise The use of noise in an EA is an algorithmic choice that does not in
uence
signi�cantly the e�ciency of a parallelization� because it usually requires only a very
small amount of computation� It could eventually increase the computation load of the
PEs while the communication load is kept unchanged� but the di	erence should not be
perceptible in most cases in terms of the e�ciency of the parallel program�

�
� Evolution A generational replacement evolution� �gr� needs synchronization be�
tween consecutive generations� It is thus very sensitive to a fair task allocation� An
implementation on an SIMD computer thus seems to be suitable if the topology of the
structured space of the EA can be mapped on that of the architecture of the computer�
On MIMD machines� a gr evolution needs extra synchronization� Yet� it is usually not
necessary to actually synchronize the PEs between consecutive generations because this
synchronization is obtained as a side e	ect of the exchange of messages �e�g�� migration�
update of global information� etc�� between PEs�

A steady state evolution �ss� is synchronous� but it changes only a few elements at each
generation� The set S is used as a pool in which elements are selected or replaced� The
information of the whole set is thus required for the consistency of the selections� Since
most of the computational load is due to the processing of the individuals # selection�
creation and�or replacement step # the control of individuals can be distributed on remote
PEs� A steady state evolution is thus well suited to a farmer�worker approach� a farmer
PE manages the set S and controls the worker PEs that handle the elements e� Only the
few elements that must be changed are exchanged between the farmer and the workers�
so the communication load stays low�

An asynchronous evolution �as� is non�deterministic because of parallel asynchronous
instructions� Even if this behavior can be simulated on a sequential computer with a
random generator that models irregular execution times� such an evolution is intrinsically
parallel and is well suited to any task independent implementation on MIMD computers�
For example� here is a possible simple implementation of an asynchronous EA� worker
PEs compute individuals and send them to a farmer PE that updates the population
without any control of synchronization�

Conclusion The only ingredients that do not provide any interesting information for
the parallelization of an EA are the �noise� and the �infeasible solution� ingredients�
This con�rms the useful purpose of the TEA for a parallelization study� The �useless�
ingredients are however kept in the TEA because it is meant as a general classi�cation�tool
based on the description of the algorithmic characteristics of EAs�

�Cf� page �� for the description� and page �� for the notation� of the di
erent types of evolution�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

����� Other important criteria for parallelization

At the beginning of the execution of an EA� data must usually be distributed on each
PE� This distribution can be more or less time consuming depending on the character�
istics of the parallel computer �mainly its architecture�� whether every PE can access
the same �le system to get its information� or only one PE can load the information
and must broadcast� it to the p � � other PEs� Intermediate situations are also pos�
sible and broadcast algorithms are sometimes dedicated to speci�c machines� In any
case� contention problems can occur and must be avoided as much as possible� This
problem is not speci�c to parallel EA� it is common to all parallel algorithms� Its study
is therefore too general to be discussed here� It is thus assumed in the remainder that
the information is locally available on each PE at the beginning of the program execution�

The choice of the best parallelization technique depends on the algorithm itself� but
also on some properties of the problem when they are known in advance �size range of its
instances� time range to evaluate a candidate� etc��� The evaluation of the �tness value
of an individual� for example� is usually viewed as a black box that attributes a value to
each individual� This black box can require highly time consuming computation� Indeed�
the computation of a �tness value sometimes requires complex simulations and the part
of time dedicated to this work can be larger than that of the evolutionary process itself�
For example� it happens when EAs are used to optimize technical systems ��� �nuclear
reactor core reload� optical multi�layers� heat exchanger networks� etc��� This criterion
does not appear in the TEA because it is strongly problem�dependent� It must however
be taken into account when planning the parallelization of an EA if the information is
available� Unfortunately� such information is not always available since a single algorithm
might be used to solve very di	erent problems�

At the end of the execution of an EA� the best individual found �i�e�� the output
result� must be known on at least one PE chosen in advance� The knowledge of the best
individual must thus either be gathered on this speci�c PE at the end of the execution�
or be kept up�to�date during all the execution on # at least # one speci�c PE �this is
sometimes already done by some internal mechanisms of the original algorithm�� How�
ever� the possible communication overhead is usually negligible compared to the total
execution time of an EA�

����� Hybrid algorithms

The TEA was not designed to describe interactions between several EAs� and it cannot
describe a traditional single�solution heuristic� It can thus only give rather limited in�
formation about a hybrid EA� it informs about the use of an improving algorithm but

�The complexity of such a broadcast depends on the architecture topology of the computer� It is at
best O�log p� on a hypercube and O�p� on a ring for example�

���� PARALLELIZATION ANALYSIS ��

without giving its function� it informs about the use of islands but non�EAs cannot run
on these islands� and pipelines �or relays� of di	erent algorithms cannot be described�

The design issues of Talbi�s taxonomy �cf� Section ������ are precisely made for de�
scribing interactions between EAs and are thus complementary to the TEA for the par�
allelization of hybrid meta�heuristics	� the description of the EAs being hybridized can
be given by the TEA while their interactions can be described with Talbi�s taxonomy�

The HCH �High�level Co�evolutionary Hybrid� class of Talbi�s taxonomy corresponds
to the island model of level L�� and it can be parallelized with a level of parallelization
L� � �L��� L��� The choice of the best level L� depends on the algorithms run on each
island �cf� Section ������� If heterogeneous meta�heuristics are hybridized then a di	erent
level of parallelization is likely to be applied to each of them�

The HRH �High�level Relay Hybrid� class describes self�contained meta�heuristics
that are executed in sequence� For example� an EA can be used to generate a solution
that will then be improved by a local search algorithm� or an EA can take as input
the results of a local search algorithm� Both choices can even be applied one after the
other� The parallelization of such a hybrid algorithm can be made by parallelizing each
meta�heuristic of the sequence independently� The meta�heuristics can then execute on
the same PEs one after the other since each of them requires the ��nal� result of the
previous one� A parallel implementation with a pipeline approach would also be possible
if a lot of successive runs were planned and if the di	erent phases had approximately the
same execution time� It would however have a very bad e�ciency for a single run of the
algorithm because only the PEs responsible for one meta�heuristic would be used at once�

The LCH �Low�level Co�evolutionary Hybrid� class represents algorithms in which
a given meta�heuristic is embedded into another meta�heuristic� typically� an operator
�e�g�� mutation or crossover� is replaced by a local search or a greedy algorithm� Since
the embedded meta�heuristic co�evolves independently from the other�s� it can be easily
applied on several individuals simultaneously �on remote PEs��

The LRH �Low�level Relay Hybrid� class represents algorithms in which a given meta�
heuristic is embedded into a single�solution meta�heuristic� Typically� it can be a local
search algorithm using an EA to pro�t from the advantages of diversi�cation and explo�
ration� In this case the EA can be parallelized as if it was alone and independent� Since
it needs to be run many times �to provide its �nal result to the embedding algorithm� a
system memorizing the global data of the problem instance between two runs can avoid
to waste of time by often rereading them�

�The implementation issues of this taxonomy are not considered here because they only inform that
the algorithm is �sequential� which is not a pertinent information for the parallelization� or they inform
that the algorithm is already �parallel� and the parallelization is not necessary anymore�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

If the hybrid EA is heterogeneous �het�� then several potentially di	erent paralleliza�
tions can be needed� If each meta�heuristic treats a di	erent problem �spe� or a sub�
problem of the problem instance �par� then the distribution of the EAs on di	erent PEs
permit to distribute the data accordingly� hence a pro�table memory gain� Otherwise all
meta�heuristics search in the same search space �glo�gen� and the problem instance must
be duplicated� no memory space can be gained�

��� Case study

The parallelization rules enumerated in the previous section are now applied in order to
parallelize three di	erent EAs� The �rst one is a classical island�based GA� the second
one is an island�based AS� and the third one is the island�based genetic ant algorithm
introduced in Section ���� The latter was chosen in order to show the limits of the rules
when they are applied to an atypical hybrid EA�

����� Parallel island�based genetic algorithms

Let us consider the island�based genetic algorithm �IGA� described by Algorithm �
�page ���� and let us set the migration rate m to � �i�e�� one individual migrates from each
island every generation�� Let us suppose that this IGA controls I islands of n individuals�
and that it must be parallelized on p PEs� The compact form of the TEA description of
this hybrid algorithm HCH�GA��hom�glo�gen� is�

Island�Individual� �Ycompl���pc�nvrN�NYgr��
Archipelago�Island� �Yring�����jIslandj��N�NNgr�

where pc is the probability of applying a crossover to a pair of individuals�
It can be deduced from this description that the level of the sequential algorithm is L�����
The parallelization level is thus in �L����� L������ The information that can be deduced
from the �rst line of the TEA is enumerated below �the numbering �i� corresponds to the
ith column
 of the TEA��

��� The size of an island is constant� Hence� no task mapping is required if islands or
individuals are distributed�

��� The topology is a complete graph� An exchange of messages on this topology should
thus be avoided�

��� Two parents are necessary to provide the information needed by an o	spring� Since
the topology is a complete graph� it is better to keep the individuals of an island
on a same PE�

�Cf� Tables ��� and ���

���� CASE STUDY ��

��� Individuals have no history� The cost to communicate a potential message contain�
ing an individual is thus minimal �only its encoding needs to be sent��

��� There is no improving algorithm� The computation of a new individual is restricted
to the computation of its �tness value�

��� The evolution is generational� Synchronization is thus needed between consecutive
generations�

Such an algorithm is di�cult to parallelize at level L� because of ��� and ���� A level
of parallelization L� should thus be avoided� The following information can be deduced
from the second line of the TEA�

��� The number of islands is constant� Hence� no task mapping is required if islands
are distributed�

��� The topology is a ring� An exchange of messages on this topology is not too costly�

��� Two parents are necessary to provide the information needed by an o	spring�

��� Islands have no history� The cost to communicate a potential message containing
an island is thus minimal �only its encoding needs to be sent��

��� There is no improving algorithm�

��� The evolution is generational� Synchronization is thus needed between consecutive
generations�

The parallelization that best �ts these criteria is a distribution of the islands on the
PEs� Islands are not partitioned because of the communication overhead that this would

produce� hence a parallelization level L�

�h
I
p

i�
with the following property�

� If p � I then L�

�h
I
p

i�
! L�

�l
I
p

m�
��L�

�j
I
p

k�
! L������L���� ! L����� It can

be noted that if I ! � then the algorithm is not parallelized and if p � I then
�p� I� PEs are not used�

� If p � I then �I mod p� PEs handle
l
I
p

m
islands and the other PEs handle

j
I
p

k
is�

lands� If the number of islands is a multiple of the number of PEs �see Fig�
ure ����b��� each PE handles the same number of islands� hence a fair load bal�
ancing� In the other case� some PEs have one more island than the others �see
Figure ����a���

More formally� it can be stated that the minimum execution time of an island�based
EA with homogeneous indivisible islands is bounded by the execution time of the PEs

with the most islands �i�e��
l
I
p

m
�� Assuming that the cost of communication is null and

that all islands have exactly the same computational load�� the maximum theoretical

	It cannot be the case exactly because EAs are highly randomized algorithms but it is a realistic
hypothesis in average�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

PE �

PE �

PE �

�a�

PE �

PE � PE �

PE �

�b�

Figure ���� Distribution of � islands positioned on an oriented ring of �� resp� � PEs�
Arrows model links allowing migration� Fat arrows model migrations requiring commu�
nications between PEs�

speed�up that can be achieved is�

S
th�	 p � I

I islands �p� !
Il
I
p

m ������

It can be deduced from the de�nition of E�ciency �Equation ���� and from Equation ����
that�

�p � ��� I��
�

�
� E

th�	 p � I

I islands �p� � � ������

The demonstration is given in Appendix B��

����� Parallel island�based ant system

The island�based ant system �IAS� works like the IGA� except that an AS �cf� Sec�
tion ������ runs on each island� instead of a GA� Algorithm � gives the scheme of this
hybrid AS� that is classi�ed as HCH�AS��hom�glo�gen� in Talbi�s taxonomy�

Let us suppose that this IAS runs I islands of n individuals and must be parallelized
on p PEs� Its TEA is�

Colony�Ant� �YN��hSnvrN�NNgr��
Archipelago�Colony� �Yring�����jColonyj��N�NNgr��

The level of parallelization of the sequential ISA is the same as that of the sequential
IGA �L��I��� Moreover� the second line of the TEA is also the same as that of the IGA�
The analysis of the second line of the TEA made in Section ����� is thus valid here� a

parallelization level L�

�h
I
p

i�
is then proposed� This parallelization uses all p PEs if p � I

exclusively�

���� CASE STUDY ��

Algorithm 	
�� island�based ant system �IAS� ��
�� determine k initial islands �P �� � � � � P k��� and initialize the trails on each
�� repeat
�� for each island i
�� for each ant
�� construct a solution sa using trails and visibility
�� evaluate the objective function at sa
�� the best ant migrates to P �i��� mod k

�� update the trails
�� until termination condition is met

The information that can be deduced from the �rst line of the TEA is enumerated
below �the numbering �i� corresponds to the ith column of the TEA��

��� The size of the ant colony is constant and there is no parent� A parallelization of

level L�

�h
n
p�

i�
is possible� where p� is the number of PEs on which an island can

be partitioned�

��� The space of the ant colony is not structured� A partitioning of the island is thus
possible�

��� The history of the colony is an information source� This information must thus be
available on at least one PE� It is advised not to partition colonies when possible�

��� Ants have no history� The cost to communicate a potential message containing an
ant is thus minimal �only its encoding needs to be sent��

��� There is no improving algorithm�

��� The evolution is generational� Synchronization is thus needed between consecutive
generations�

At this stage� a partitioning of the islands is possible and the information of the colony
must be available on at least one PE� The parallelization that best corresponds to these

criteria is a farmer�worker approach of level L�

�h
n
p�

i�
where p� is the number of PEs

on which a colony is partitioned �p� must be greater than � otherwise the colony is not
partitioned and thus not parallelized��

According to the second line of the TEA� it is better to distribute islands on PEs
without partitioning them� Hence� as long as islands can remain unpartitioned �i�e�� as
long as p � I� they will not be partitioned� If p � I then colonies are partitioned on
p� !

�
p
I

�
PEs�

The parallelism hence obtained has three levels� depending on the values of p and I�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

� If p � I then the level of parallelization is L�

�h
I
p

i�
�

� If I � p � �I then the level of parallelization is L������L�

	�
n
�

��
�

� If �I � p then the level of parallelization is L�

��
n
� pI �

��
�

The distribution of I islands on p PEs is done as follows�

� If p � I then �I mod p� PEs handle
l
I
p

m
islands and the other PEs handle

j
I
p

k
is�

lands�

� If I � p � �I then each PE handles one island of size n or one sub�island of size

n
�

�
or

n
�

�
�

� If �I � p then each PE handles one sub�island of size

�
n
d p
I e
�

or

�
n
b p
I c
�

or

�
n
d p
I e
�

or

�
n
b p
I c
�
�

Figure ��� shows the role of each PE on an example� The farmer sub�islands are
responsible for the communications �migration� between islands� while worker sub�islands
only communicate with their farmer sub�island in order to update the traces�

PE �

PE �

PE �

PE �PE �

PE �PE

m
ig
ra
ti
o
n

m
igration

m
ig
ra
tio
n

Island �

Island �

Island �

u
p
d
a
te

tr
a
c
e
s

u
p
d
a
te

tr
a
c
e
s

u
p
d
a
te

tr
a
c
e
s

Farmer
�

Farmer
�

Farmer
�

Worker�
�

Worker�
�

Worker�
�

Worker�
�

Figure ���� Distribution of � islands on � PEs� Each PE handles a sub�island
farmer or
worker
�

���� CASE STUDY ��

If p � I� the islands are distributed on the PEs without being partitioned� hence
the same theoretical speed�up �with a null communication cost� as that of the IGA
�cf� Equation ������ Otherwise� if p � I it can be stated that the minimum execution time
of an island�based EA with homogeneous divisible islands is bounded by the execution
time of the PE�s� with the most individuals �ants here�� Such PE�s� must handle a part
of the less partitioned island� that is� an island with

p
I

�
partitions� The size of the largest

sub�population is thus

�
n
b p
I c
�
hence the theoretical speed�up �with a null communication

cost��

S
th�	 p � I

I size n islands
�p� !

I � n�
n
b p
I c
� ������

Figure ��� shows an example of theoretical speed�up that is computed with Equa�
tions ���� and ����� This graph represents the maximum speed�up that can be achieved
by the parallel IAS described above� The number of ants is not necessarily the same on
each PE� and the PEs with the most islands bound the speed�up that can be achieved�

Each time
l
I
p

m
�!
j
I
p

k
for p � I� and each time

p
I

� �!

p
I

�
for p � I� there is a step on

the speed�up graph� A ���) e�ciency can only be achieved when the number of PEs is
a divisor� or a multiple� of the number of islands �i�e�� not for every step��

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

T
he

or
et

ic
al

 s
pe

ed
-u

p

Number of PEs

100% efficiency
Theoretical

Figure ���� Theoretical speed�up for � islands of �� ants� It is computed by Equations ����
up to �� PEs� and by Equation ���� from �� to �� PEs�

As previously demonstrated for p � I� it can be deduced from Equation ���� and
Equation ��� that the theoretical e�ciency is greater than �

�
when p � I �cf� the demon�

stration in Appendix B����

�p � �I� I � n��
�

�
� E

th�	 p � I

I size n islands�p� � � ������

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

A fair partitioning of the islands could be done by distributing the ants on the PEs
instead of distributing and partitioning islands� This would result in a level of paral�
lelization�

L�

��
I

p

��
$ L�

�
�
�
�
�
I �

j
I
p

k�
n

p

�
�
�
A �

With such a parallelization the di	erence of computational load between two PEs is at
most the computation required by one ant� However� this parallelization was not chosen
in order to minimize the communication required to control the colony history �cf� the
third parallelization rule deduced from the �rst line of the TEA�� It can be noted that
when I mod p ! � this level of parallelization is the same as that of the parallelization

deduced from the rules� L�

�
I
p

�
�

The parallel IAS �and AS� described here was implemented and tested� and the results
are presented in Chapter � and Chapter �� Another study on parallelization strategies for
the AS �without islands� can be found in ����� A farmer�worker model was also chosen in
this article� However� the speed�ups it presents were not based on real parallel executions
but on simulation�

����� Parallel island�based genetic ant algorithm

Let us now parallelize the island�based genetic ant algorithm �IGAA� described by Al�
gorithm � in Section ���� Let us suppose that it runs I � � islands of n individuals on p
PEs� The compact TEA associated to this hybrid EA is�

Population�Individual� �Ycompl���pc�nvrN�NYgr��
Colony�Ant� �YN��hSnvrN�NNgr��
Archipelago�Population�Colony� �Yring�����jPopulationj��N�NNgr��

The �rst two lines of the TEA are respectively the same as the �rst line of the TEA of
the IGA� and the �rst line of the TEA of the IAS� Moreover� the third line of the TEA is
the same as their second line except that islands now evolve according to heterogeneous
EAs� GA and AS have di	erent computational loads and the di	erence between these
algorithms is a priori not known� it depends on their implementation� on the complexity
of their objective functions� etc� At this stage� islands are simply considered to be com�
putationally homogeneous� Since the levels of parallelization proposed for the IGA and
the IAS were identical when p � I� this level is proposed for the IGAA under the same
condition�

� If p � I then the level of parallelization is L�

�h
I
p

i�
�

For p � I� the level of parallelization suggested by the �rst line of the TEA is still

L�

�h
I
p

i�
�it is equal to L���� in this case� whereas the second line suggests the levels

proposed for the IAS �cf� page ���� Islands are assumed to be homogeneous by lack of

���� CASE STUDY ��

information� It is yet possible to guess that the constructive techniques applied by the
AS are more time consuming than the operators of a GA� It is thus assumed that the
island with ants needs a little bit more computation than the others in order to iterate
one generation� This hypothesis is approximative� but it permits a �rst application of the
parallelization rules in this atypical case� the level of parallelization applied to the ant
island is tried to be kept lower than that of the other islands� The parallelization level

that is proposed is then L�

��
nh
p�

I�

i
��

��L�

�h
I��

p��

i�
where p� is the number of PEs on which

I � ! � ant island is partitioned and p�� is the number of PEs on which the I �� ! I � �
other islands are distributed �with p ! p� $ p���� The resulting level of parallelization is

then L�

�h
n
p�

i�
��L�

�h
I��
p�p�

i�
with p� � �p� �� p� I $ ��� For the parallel prototype used

in the next chapters p� is chosen in order to minimize the highest component of the level

�i�e�� L�

�h
I��
p�p�

i�
�� p� ! p� I $ �� The consequences of this choice and of the hypothesis

that the AS is a little bit more time consuming than the GA are shown and discussed in
Sections ��� and ���� It results that�

� If p � I then the level of parallelization is L�

�h
n

p�I��

i�
��L�����

Figure ��� shows an example of the distribution of islands for Algorithm � with the
level of parallelization de�ned above� Islands are �rst distributed uniformly on the PEs�
and when p � I the ant island �numbered �� is partitioned on the �p� I $ �� remaining
PEs�

PE �

PE �

PE �

PE �

PE �

PE �

m
igration

m
igrationm

ig
ra
tio
n

m
ig
ra
tio
n

Island �

Island �

Island �

Island �

u
p
d
a
te

tr
a
c
e
s

Farmer
�

Worker�
�

Worker�
�

Figure ���� Distribution of � heterogeneous islands on � PEs� Island � is an ant colony
while the others are populations that evolve with a genetic algorithm�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

��� A library for evolutionary algorithms

����� Requirements

A software environment is necessary in order to test the parallel EAs described in the
previous section� A library must be chosen to test them in a general framework� that is�
to treat di	erent problems encoded in di	erent manners with di	erent EAs� The same
code should be reused as much as possible in each test case�

This library must be used to test the parallelization rules discussed in this chapter�
Since the aim of these rules is to provide the best way to parallelize a given EA� the
parallelization technique� that is chosen in each case� should be transparently applied
�from the user point of view��

The necessity of a reusable and modular library that permits the use of complex data
structures and that can encapsulate the parallel code leads to choose an object�oriented
library �object�oriented concepts are described in ������ This library must�

� make the implementation of EAs easier �including genetic algorithms� ant systems�
etc�� by providing their data structures �e�g�� population� individual� etc��� and
their basic functions �selection� migration� mutation� etc���

� make the conception of hybrid algorithms easier�

� encapsulate parallel computing functions in order to allow parallel executions as
transparently as possible� without requiring any parallel computing knowledge�

� identify and isolate the parts of code related to�

� the algorithm�

� the encoding of the genotypes�

� the problem�

Some general comments can be made from these minimal requirements� First� the
design of the library should be thought directly for distributed sub�populations� remote
islands� etc� If parallel features are added afterward� the result of their integration in
an existing library cannot be as elegant� and as e�cient� as built�in functions� Second�
the library must contain general EA classes� classes dedicated to speci�c EAs� problem
speci�c classes and classes to encode the genotypes�

The choices of the mutation operator� the population size� and the stop criterion�
are not algorithmic choices but only algorithmic parameters� It must thus be possible
to make these choices at run�time through con�guration �les� and not when writing or
compiling a program�

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

Name Type OS Overview �author of the software�

DGenesis GE�
ED

Unix A distributed implementation in which each island is
handled by a Unix process� The topology between the
islands can be set�
E� Cantu�Paz

GALOPPS GE Unix�
Dos

A general�purpose parallel GA system with a lots of
options� and an optional graphical interface�
E� Good�
man

PARAGenesis GE CM Implements a classical GA on a CM���� in C��

M� van Lent

PGA SS�
GE

Unix A simple testbed for basic explorations in GAs� Com�
mand line arguments control a range of parameters�
Provides a lots of GA options�
P� Ross

PGAPack GA Unix�
Dos

A general�purpose� data�structure�neutral parallel GA
library� Provides most of capabilities in an integrated�
seamless� and portable manner�
D� Levine

Table ���� Description of C libraries dedicated to parallel GAs� The following acronyms
are used� GA
Genetic Algorithm
� GE
GEnerational GA
� SS
Steady�State GA
�
ED
Educational Demo
� CM
Connection Machine
�

����� Existing libraries

To date� �� system packages�� related to ES and GA can be found in the literature �����
Among them� � libraries were designed to run parallel GAs� In fact� they run parallel
island�based GAs �except PARAGenesis�� These � libraries are written in C� They were
developed by academic institutions� and all of them are freely available� They are listed
in Table ����

Among the �� system packages� �� are object�oriented libraries� None of these object�
oriented libraries were designed for parallel computing� They are listed in Table ����
Further information� contacts and descriptions of EA libraries are available in �����

None of the existing libraries �ts� or can be extended to� the requirements introduced
in ������ The main di�culty is that none of the object�oriented libraries were designed
directly for parallel computing� A library that would be enhanced with parallel func�
tions cannot be as consistent as a library that would be designed for parallel computing�
Moreover� these libraries were not thought to integrate GA and constructive algorithms
in a same framework� A new EA library that is not based on an existing one was thus
developed� This new library is named APPEAL �for Advanced Parallel Population�based
Evolutionary Algorithm Library��

�
�� of these packages are commercial products�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

Name Type OS Lang� Free Overview �author of the software�

EvoFrame�
REALizer

ES Mac�
Dos

C���
OPas

A programming tool with a prototyping tool�
It permits pseudo�parallel optimization of
many problems at once�
Optimum soft�

GAGS GA Unix�
Dos

C���
perl

� Features a class library for GA programming
and is also a GA application generator �tak�
ing the function to be optimized as sole input
data��
J� J� Merelo

GAlib GA Unix�
Mac�
Dos

C�� � Provides usual genetic operators and data
representation classes� and permits to cus�
tomize them�
M� Wall

GAME GA WIN C�� Aims to demonstrate GA applications and
build a suitable programming environment�

J� R� Filho

GA Work�
bench

GE�
ED

Dos C�� � A mouse�driven interactive GA demonstra�
tion program� The source code is not pro�
vided�
M� Hugues

Generator GA�
ES�
ED

Win�
Excel

C�� � Solves problems using Excel formulae� tables
and functions� Progress can be monitored
and saved�
S� McGrew

GPEIST GP Win�
OS��

Small�

talk

� Provides a framework for the investigation
of GP within a ParcPlace VisualWorks de�
velopment system�
T� White

Imogene GP Win C�� � Generates images by combining and mutat�
ing formulae applied to each pixel� The re�
sult is a simulation of natural selection in
which images evolve�
H� Davis

MicroGA�
Galapagos

SS Mac�
Win

C�� A tool which allows programmers to inte�
grate GAs into their software� It comes with
source� documentations� and an application
generator�
Emergent Behavior� Inc�

OOGA GE Mac�
Dos

Lisp Designed for industrial use� Each GA tech�
nique is represented by an object that may
be modi�ed�
L� Davis

TOLKIEN GE Unix�
Dos

C�� � Designed to reduce e	ort in developing
genetic�based applications by providing com�
mon classes�
A� Y�C� Tang

Table ���� Description of object�oriented libraries dedicated to EAs� The following
acronyms are used� GA
Genetic Algorithm
� GE
GEnerational GA
� GP
Genetic
Programming
� SS
Steady�State GA
� ES
Evolution Strategy
� ED
Educational Demo
�
OPas
Object Pascal
�

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

����� Object�oriented model of APPEAL

The object�oriented model of the Advanced Parallel Population�based Evolutionary Algo�
rithm Library is presented below� It corresponds to the requirements enumerated in ������

The overall model of the library is given here using the notations of the Fusion
method ����� This method divides the process for software development into several
phases� Since the complete description of the application of these phases would be
lengthy� only the analysis phase is overviewed here� The implementation choices are
explained in ������ The notation used in the following �gures is intuitive and relies on
simple object�oriented software design concepts� It is described in Table ����

Representation De�nition

+ attribute

class1

class2

Classes are represented by rectangular boxes that can contain
other boxes �i�e�� aggregate other classes� and attributes� The
cardinality of each aggregated class appears in its upper�left cor�
ner �a '�� means �at least one���

relationship
tofrom1 3

Relationships between classes are written with diamonds� The
cardinality and the role of each class involved in the relationship
appears on the line that links the diamond to the classes�

Small black squares indicate that a relationship is mandatory�

class1

class2 class3

Super�classes are written above sub�classes� and a small triangle
drawn on the line that links super�classes and sub�classes models
their inheritance relationship�

Table ���� Notations used to describe the object�oriented model� It is a subset of the
notations used in the analysis phase of the Fusion method �����

Figures ��� and ���� whose descriptions follow� are taken as examples to illustrate the
use of this notation�

Figure ��� shows the main classes needed to design an evolutionary algorithm� The
largest rectangular box represents the Evolution class that controls the evolution of an
algorithm� It aggregates one Transcoder and at least one Population� The Transcoder is
used to encode �and decode� the information in the Genotype of every Individual contained
in a Population� A more detailed description of these classes is given in the next pages�

Figure ��� shows the use of sub�classes inherited from the class Genotype� This class
models the genotype of an individual� It has two attributes �size and maxValue�� and
one aggregate class �RandomGenerator�� The attribute size represents the number of

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

1 Genotype

Individual+

Population+ 1 Transcoder

Evolution

Figure ���� Example of class aggregation� the class Evolution aggregates one Transcoder

and at least one Population� that aggregates at least one Individual� etc�

components that constitutes the genotype �e�g�� the length of a genotype array�� and
maxValue is the maximum value that a component can take� Class RandomGenerator is
necessary to construct random genotypes�

The relationships between Genotype and Transcoder �i�e�� construct and evaluate� are
shown in diamonds in Figure ���� These relationships are mandatory� that is� a Transcoder
must have a method to construct a Genotype and a method to evaluate this Genotype� The
class Transcoder translates combinatorial optimization problem information into Genotype
encoding� It is the only class that is �aware� of the problem and of the way its candidates
are encoded�

In Figure ���� the �rst level of inheritance determines the way class Genotype is en�
coded�� �e�g�� BoolGT represent a boolean vector encoding that consists in at least one
boolean component of type Bool�� The second level of inheritance is optional� It permits
the enhancement of the interface of Genotype by adding speci�c attributes and opera�
tors� For example� in a GA an individual must be encoded by a genotype that inherits
from GeneticOperator �e�g�� GeneticBoolGT�� in order to have an attribute isMated and
a crossover operator �that produces two GeneticOperator�s from two GeneticOperator�s��
The implementation of these operators is di	erent for each encoding of Genotype and is
not written in GeneticOperator� This second inheritance is thus only possible if the im�
plementation of the operators is made in the class that de�nes the encoding of Genotype
�e�g�� BoolGT� IntegerGT� etc���

Figure ��� shows how a Transcoder can construct a Genotype� First� the Transcoder

determines the choice that must be made� that is� the set of solution elements that
could be added to the partial solution encoded in a Genotype� Second� the Transcoder

sets the probability value of each solution element� Problem�speci�c knowledge �known as

��This �rst level of inheritance can in fact have several intermediate levels of inheritance �not shown
on Figure ����� For example� sub�classes such as VectorGT or MatrixGT can inherit from Genotype and
they can then be specialized in BoolVectorGT� IntegerMatrixGT� BoolMatrixGT� etc�

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

1 RandomGenerator

maxValue

size

Genotype

Bool

BoolGT

+ Integer

IntegerGT

+

GeneticBoolGT GeneticIntGT

construct

evaluate

isMated

2 2

GeneticOperators

a

a

cross type

crossover

Transcoder

Figure ���� The class Genotype� its sub�classes� and its relationships with the Transcoder�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

visibility��� and external evolutionary information �called Trail��� can be used to compute
this probability� It is then possible to choose a SolutionElement from a Choice according
to di	erent rules�

� the choice depends on the probability for each SolutionElement to be chosen� or

� the choice is made totally at random� or

� the SolutionElement with the highest probability is always chosen�

Finally� the Transcoder adds the chosen SolutionElement to the Genotype that represents
a partial solution� These steps are repeatedly applied until the Genotype represents a
complete solution�

value

id

visibility

probability

SolutionElement+

Choice Genotype

alpha, beta

setProbability

SolutionElement

11

add

to

of

to

or
create

from

a

a

a

using

completness

check the

tau deltaTau

step rho

size

Trail

update

choose

Transcoder

Figure ���� Classes used to construct a Genotype�

Figure ��� shows the main characteristics of the class Population� It contains many
attributes and a set of Individual�s� It is possible to replace any of its Individual�s and to

��Cf� Section �����

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

select one of them according to di	erent rules �at random� according to its �tness value�
etc��� It is also possible to scale an Individual in order to normalize its �tness value within
a Population� A Population �remembers� the best Individual �that with the highest �tness
value� that has ever been part of it� A Transcoder can update an Individual� that is� it
can check and �re�compute each of its attributes in order to make them consistent�

isSelected

1 RandomGenerator

fitnessValue1 Genotype1

consistencyage

Individual+

Population

partId

remoteId

size

generationNb

id

fitnessAverage
isTheBest

isScaled

isUpdated
by

Individual

in

of

by

indivNb

replace

AntColony

Trail

a

size

initialize
Transcoder

AntColonyFarmer AntColonyWorker AntColonyNormal

Farmer Worker

inupdate
trail

Figure ���� Class Population� its sub�classes� and its relationships with Individual and
Transcoder�

An AntColony is a Population that contains and evolves Trail�s� No speci�c class
is designed for ants since they are similar to Individual�s� Trail�s are thus updated by
Individual�s�

If a population needs to be partitioned on remote PEs� it can be implemented either
as a �farmer� or as a �worker� Population� A �farmer� Population is a part of a popula�
tion that is responsible of the consistency of the information for the whole Population�
A �worker� population is a part of the population that exchange information with its

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

�farmer� Population� If the population does not need to be partitioned� it can simply
be implemented as a �normal� population� An example is given with AntColony in Fig�
ure ���� The classes AntColonyNormal� AntColonyFarmer� and AntColonyWorker are only
used for the internal mechanisms of the library� Therefore� this part of the model can be
ignored by a programmer who only wants to use the library�

Class Evolution� shown in Figure ���� is the heart of evolutionary algorithms� It con�
tains all the information and speci�c data structures an EA needs� that is� at least one
Population� a Transcoder whose specialized sub�classes permit to treat speci�c combinato�
rial optimization problems� general evolutionary parameters� a ComBox to control parallel
executions� a RandomGenerator and a Timer that can be used by a StopCriterion or for
statistical observations�

Topology

1 EvolutionParameters

nbOfIslands

nbOfTasks

size

etc.

1 StopCriterion

ComBox1 1 RandomGenerator

Timer1

crossoverProbability

etc.

mutationProbability

GeneticParameters1

1 AntColony AntParameters

alpha

beta

rho

etc.

1

Individual

1 Transcoder

nbOfLocalIslands

Evolution

GeneticEvolution

AntEvolution

isTheBest

control

of

in

on

constructed
is

Ant
as an

migration

Population+

Figure ���� Class Evolution and two examples of its sub�classes
for an AS and a GA
�

ComBox provides standard message passing methods such as sendTo� receiveFrom�
etc�� to send and receive messages from one PE to another� The purpose of this class
is to hide the system speci�c�calls to message passing functions� The class Transmissible

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

uses ComBox to send and receive contiguous memory segment that encode �transmissi�
ble� objects� The Serialisable class is similar to Transmissible but it provides packing and
unpacking methods that automatically encode any �serialisable� object in a contiguous
memory segment� Any object whose class is inherited from Serialisable can therefore
be sent to �resp� received from� a PE by simply calling the sendTo
targetPE
 �resp� re�
ceiveFrom
sourcePE
� method� Figure ���� shows typical classes that are �serialisable�
�e�g�� Individual��

Transmissible

ComBox

Transmissible

Genotype Individual Population

1

to
receive

send

PE

PE

from

Trail

Serialisable

Figure ����� The parallel computing class hierarchy�

Evolution has potentially as many sub�classes as there exist di	erent EAs� It controls
the migration of Individual�s on a given Topology� and it can return the best Individual

that was ever found since its construction�
An AntEvolution aggregates specialized sub�classes of Population and EvolutionParame�

ters in order to execute ant systems� It is for example capable of constructing an Individual

as an �ant� �cf� Algorithm ���

The originality of this model is the consideration of evolutionary and constructive
approaches in the same framework� This permits� among other things� to implement ASs
that need to construct ants during the evolution of the population they control� The
information needed to construct the Genotype of an Individual that represents an ant is
in the following classes� Transcoder� Trace� RandomGenerator and AntParameters� The
construction of such an Individual in an AS is thus possible by using the relationships
shown in Figure ���� because all these classes are available in AntEvolution class�

In this object�oriented model� classes are divided in three distinct categories�

� The classes related to EAs� Evolution� GeneticEvolution� AntEvolution� Population�
AntColony� Individual� Genotype� GeneticOperators� Choice� SolutionElement� Evolu�
tionParameters� GeneticParameters� AntParameters� etc�

� The classes related to the encoding of the candidates into genotypes� IntegerGT�
BoolGT� etc�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

� The classes related to the problem to be solved� Graph� ColoringParameters� etc�

Figure ���� gives a graphical representation of this partition into three categories� The
only class that cannot be classi�ed in one of these categories is the Transcoder class that
serves as an interface between the classes related to the problem and those related to
the encoding of its candidates� Such a class is required since the encoding�decoding of a
candidate �that is problem�dependent� into a given genotype �that is encoding�dependent�
is necessary in any EA�

Evolution

GeneticEvolution
Population

Individual

Genotype GeneticParameters

ColoringParameters

ColoringTranscoder

Graph

BoolGTIntegerGT

Transcoder

ALGORITHM

ENCODING PROBLEM

Figure ����� Partition of the classes into three categories� The Transcoder class is the
link between the ENCODING and the PROBLEM categories� It is the only one that can
encode a given problem modeling into a genotype encoding� and decode a given genotype
encoding into the proper problem modeling�

Classes that are only necessary for the internal mechanisms of the library are not
considered here because they are not explicitly used in a program� Most of these classes
are standard classes �e�g�� Array� String� RandomGenerator� Timer� etc��� The others are
used for the transparent parallelization of the EAs �e�g�� AntColonyFarmer� Serialisable�
ComBox� etc���

Let us suppose that the graph coloring problem must be solved by the hybrid genetic
ant algorithm of Algorithm �� Figure ���� shows how classes dedicated to this speci�c
problem are integrated in the framework of the library� speci�c parameters �e�g�� max�
imum number of colors to use� are attributes of ColoringParameters� the graph to be
colored is modeled by the Graph class� and the �tness value of GeneticIntGT that encode
candidates is computed by the ColoringTranscoder with the FitnessFunction class�

���� A LIBRARY FOR EVOLUTIONARY ALGORITHMS ��

Graph

use

GeneticParameters

ColoringParameters

AntParameters

GeneticIntGT

nbOfColors

graphName

color

FitnessValue

with

of

a

compute

FitnessFunction

Tanscoder

ColoringTranscoder

Figure ����� An example of instantiation of APPEAL classes for the graph coloring prob�
lem�

����� Implementation of APPEAL

The implementation of the Advanced Parallel Population�based Evolutionary Algorithm
Library
APPEAL
 was done in C�� ����� Even if this language has many gaps ���� and
is sometimes limited with respect to some object�oriented concepts �like genericity�� C��
is widely used and permits to bene�t from existing libraries and programs to interface
with�

The kernel of a GA C�� program available at EPFL was used as a basis to write
APPEAL� The code is written according to the object�oriented recommendations of ����
and ����� It tries to reuse existing standard classes as much as possible �according to
object�oriented programming style�� For example� the C�� library LEDA �Library of
E�cient Data types and Algorithms� ���� is used to avoid rewriting basic classes such as
String� List� and Set� Nevertheless� it would be easy to replace LEDA by any other library
providing the same basic classes�

The implementation of message passing functions is currently based on the PVM
library ����� Function calls to the PVM library are well integrated to the rest of the
library� but are however not spread all over the classes� They are encapsulated in only
one class # ComBox # whose interface exhibits basic message passing methods� ComBox

could easily be rewritten with any other message passing library �like MPI ���� or any
parallel computer speci�c library�� hence a good portability of APPEAL on any MIMD
computer�

The portability of the library was not checked on every possible platform� since the
aim of this work was primarily to use APPEAL within di	erent projects �LE O PA RD �
STORMS� PERFO� in order to apply and test the parallelization rules� However� re�
cent tests �e�g�� with egc� showed that the use of APPEAL with up�to�date compilers is
straightforward�

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

����� Current state and future evolution of APPEAL

A complete description of the C�� library APPEAL �release ���� August ����� is given in
a reference manual ����� The current version of APPEAL does not include all the classes
required for every EA and every possible genotype encoding� but only those necessary
for the EAs presented in the last two chapters of this thesis� It currently includes�

� all the general EA classes� Evolution� Individual� Genotype� etc��

� the classes dedicated to island�based generational replacement GAs� ant systems�
and one of their hybridization �cf� Section ����� GeneticEvolution� AntEvolution�
GeneticAntEvolution� AntColony� Trace� etc��

� the classes to encode the Genotype into a bit�string �BoolGT� and into a real�valued
array �IntegerGT��

� the Transcoder class� that consists of the minimum interface that is necessary to
encode a given problem candidate into a Genotype and to decode the latter�

� a simple example of classes necessary to treat a given combinatorial optimization
problem� the graph coloring problem that is described in Chapter � �Coloring�
Parameters� ColoringTranscoder� FitnessFunction����

� the parallel processing package �ComBox� Serialisable� Transmissible� that is neces�
sary to execute parallel programs�

APPEAL can easily be enhanced by adding new classes at the condition that they
satisfy the primary speci�cations stated in ������ For example� the only topology currently
implemented is the ring� It would be interesting to implement �or use an existing� software
library that provides topology classes in order to change them as easily as any other
parameter of a program written with APPEAL�

Let us suppose that a problem is solved by a program written with the current classes
of APPEAL� If an evolution strategy �cf� Section ������ must be tested on this problem�
then only two classes must be written �EvolutionStrategyEvolution and EvolutionStrategy�

Parameters� since the other classes already exist �Population� etc��� If a new encoding of
the candidates must be tested� then�

� the class of the new encoding # a sub�class of Genotype # is possibly written �if it
is not available in APPEAL��

� the declaration of the encoding class is changed in the main program �only one
word must be changed��

� the encoding and decoding methods corresponding to the new encoding must be
written in the sub�class of Transcoder that is associated to the problem �e�g�� New�
ProblemTranscoder��

and the new program can be compiled�

��These classes are used to implement the programs of Chapter ��

���� ALTERNATIVE APPROACHES TO THE PARALLELIZATION OF EAS ��

��� Alternative approaches to the parallelization of

EAs

The choice made in this thesis is to parallelize EAs without changing their original be�
havior� This section presents two alternative approaches that do not satisfy this choice�

����� Parallelization based on autonomous agents

Instead of parallelizing EAs by managing the distribution and the partitioning of elements
�individuals� populations� etc��� it might be possible to consider autonomous agents that
represent these elements� For example� each individual could be an autonomous agent
that would evolve according to its own evolutionary rules� It could�

� mutate�

� select other �individual agents� to mate with�

� migrate from an island to another on its own initiative �even if these islands are on
di	erent PEs��

� evaluate its own �tness by submitting its genotype to a transcoder�agent���

With such an approach it would probably be di�cult to ensure that the behavior of the
algorithm is similar in sequential as in parallel� Moreover� if each individual�agent needed
to be aware of any other� the communication load would be very high �each agent sending
its request� the same message would be sent several times� hence a likely ine�ciency in
this case��

This approach could however be used in some particular cases �e�g�� when the indi�
viduals do not share a global information and do not need to be aware of each other��
The TEA description can help to identify such situations� Here are the minimal rules
that should be satis�ed in order to be able to parallelize an EA with autonomous agents
�the numbering �i� corresponds to the ith column of the TEA��

��� The set of elements should be unstructured� If it is structured� the topology used
to map it should have a small diameter�

��� The exchange of information should involve a small amount of elements and must
not use the history of the set�

��� The synchronization of agents is very costly� An asynchronous evolution is thus
necessary�

��The notion of transcoder is explained page ���

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

����� Asynchronous parallelization

Let us suppose that a parallel EA is executed on heterogeneous PEs� In this case� the
PEs have di	erent speed� and some of them may end their computation much later than
the others� Let us now suppose that the load balancing of a parallel EA is unfair �on
homogeneous or heterogeneous PEs�� In this second case� the same problem occurs� The
PEs that are in charge of the greatest amount of computation may end their computation
much later than the others� In this two cases� if the parallel EA is synchronous� then an
important part of time is wasted by waiting for the end of the computation on the slowest
�resp� most charged� PE� It is possible to avoid this waste of time by taking advantage
of asynchronous communications� However� this implies that the original algorithm be
transformed into an asynchronous one�

An asynchronous evolution can be inspired by a generational or a steady�state evo�
lution with a slight modi�cation� the removal of any synchronization constraint� This
modi�cation has no positive algorithmic e	ect since it can lead to a partial loss of informa�
tion that might decrease the quality of the solution� When executed on a heterogeneous
network of PEs �a NOW� for example�� the resulting asynchronous evolution should how�
ever be faster than the synchronous evolution it is inspired by� The main question that
should be considered when designing an asynchronous evolution this way is� �Is the time
gained worth loosing a given ratio of the solution quality ���

For example� in the parallel algorithms introduced in Section ���� each PE must wait
to receive the best individual from its neighbor before starting the evolution of the next
generation� The probability of having a slow PE in a heterogeneous network of worksta�
tions increases with the number of PEs used� Thus� when the number of PEs is high� an
important part of time is wasted� The following modi�cations can be made to the original
parallel island�based algorithms described in Section ���� any synchronous communica�
tion due to individual migration is replaced by an asynchronous one� and the algorithm
stops when at least one island has reached the stop criterion �e�g�� it has evolved during
a given number of generations�� Algorithm �� gives the scheme�� of this AIEA �Asyn�
chronous Island�based Evolutionary Algorithm��

This approach is not consistent with the aim of studying the parallelization of EAs
without changing their behaviors� This approach is thus not considered in the remainder�
It is however presented here since the study of such asynchronous parallel EAs �in terms
of speed�up and performance� would be an interesting complement to the present work�

��A loss of performance is probable since in an asynchronous EA the amount of information exchanged
is altered by the system�

��The ring topology is kept in order to allow comparison with the other algorithms� This scheme can
however be generalized to any topology�

���� ALTERNATIVE APPROACHES TO THE PARALLELIZATION OF EAS ��

Algorithm ��
�� Asynchronous island�based evolutionary algorithm �AIEA� ��
�� determine k initial islands �P �� � � � � P k���
�� generation � �
�� repeat on each island P i simultaneously �without synchronizations�
�� generation � generation $�
�� apply evolutionary operators in P i

�� the best individual of P i is sent to P �i��� mod k

�� if at least one individual was received from P �i��� mod k since last time
�� then the individual the most recently received is put in P i

�� until at least one island satis�es the termination condition

�� CHAPTER �� PARALLELIZATION OF EVOLUTIONARY ALGORITHMS

The wireless telegraph is not di�cult to
understand� The ordinary telegraph is like a

very long cat� You pull the tail in New
York� and it meows in Los Angeles� The

wireless is the same� only without the cat�
Albert Einstein� physicist
���������

Chapter �

Transceiver siting application

One of the key issues telecommunication companies must face when deploying a mobile
phone network is the selection of a good set of sites among those possible for installing
transceivers or Base Transceiver Stations
BTSs
� The problem comes down to serving
a maximum surface of a geographical area with a minimum number of BTSs� The set
of sites where BTSs may be installed is taken as an input� and the goal is to �nd a
minimum subset of sites that allows a 'good� service in the geographical area� This
transceiver siting problem is tackled in the European project STORMS� which aims at
the de�nition� implementation� and validation of a software tool to be used for design
and planning of the UMTS� network project�

In this chapter� a model of the transceiver siting problem as well as di	erent programs
that were developed to solve it are described� The programs are based on the parallel
EAs described in Section ��� and on other algorithms used for comparison� The following
sections elaborate on speed�ups achieved experimentally� and the last one overviews the
quality of the results returned by each algorithm�

��� Problem modeling

����� Urban radio wave propagation simulation software

This section brie
y presents a urban radio wave propagation simulation software� called
ParFlow��� It is not thoroughly described in this manuscript for homogeneity reasons�
However� its development was necessary to create realistic input data for the transceiver
siting applications introduced in this chapter� and it is thus presented here�

�STORMS stands for Software Tools for the Optimization of Resources in Mobile Systems�
�UMTS stands for Universal Mobile Telecommunication System

��

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

Figure ���� Results of a radio wave propagation simulation achieved for a � km� district
of the city of Geneva� The darker the grey� the better the signal reception�

In ����� a new approach to modeling radio wave propagation in urban environments
based on a Transmission Line Matrix �TLM ����� was designed at the University of
Geneva ����� The ParFlow method compares with the so�called Lattice Boltzman Model�
that describes a physical system in terms of motion of �ctitious microscopic particles over
a lattice ���� The ParFlow method permits fast bidimensional radio wave propagation
simulation� using a digitized city map� assuming in�nite building height �see Figure �����
It is thus appropriate for simulating radio wave propagation when transmitting antennas
are placed below rooftops� This is the case in urban networks composed of micro�cells�

ParFlow�� denotes an object�oriented� irregular implementation of the ParFlow
method� targeted at MIMD�DM platforms� Its purpose is to compute cells covered by
BTSs in a urban environment� To date the use of object�oriented programming is not very
common in parallel super�computing� For this reason implementing the ParFlow method
using object�oriented techniques appeared to be an appealing challenge� ParFlow�� runs
on networks of workstations� on a Cray T�D� and on a SGI Origin ����� This work is
described in details in ���� ��� ��� ��� ��� ��� ����

����� Cells

A geographical location is said to be served when it can receive the signal broadcast by
a BTS with a given quality of service�� The area served by a BTS is called a cell� A
cell is usually not connex� It must be noticed that� since each BTS is associated to a
cell� the distinction between a BTS� its site and its cell will not be done in the remainder
of this chapter� The computation of cells may be based either on sophisticated wave
propagation models� on measurements� or on draft estimations� In any case� we assume

�The notion of service is sometimes compared to the notion of coverage� The latter is however only
related to the physical notion of receiving a radio wave independently from the notion of quality of
service �e�g�� restriction on time delay and delay spread� that are the average and the standard deviation
of the time needed by a message to propagate between the transceiver and the receiver��

���� PROBLEM MODELING ��

�a� �b�

Figure ���� Three cells computed on the French region �Les Vosges�
a
� and in a district
of the city of Geneva
b
� The black zones represent the served areas�

that cells can be computed and returned by an ad hoc function� In the present case�
geographical locations are discretized on a regular grid� and the cells are computed by
thresholding the output data of radio wave propagation prediction tools� such as that
presented in previous section� Figures ��� shows the shape of cells� computed in the hilly
French region �Les Vosges� and in the Swiss urban district of Geneva �in this example�
indoor radio wave propagation is not considered��

����� Examples of instances�

One arti�cial and three real�life cases are chosen as instances of the transceiver siting
problem� They all include a geographical region and a set of potential transceiver sites�

The arti�cial instance� called Squares��� � includes a set of ��� dummy potential BTS
sites� It is generated as follows� on a ���� ��� point grid representing an open�air
at
area� �� square cells are distributed regularly in order to form a ��� grid structure� Each
of the ����� point cells is associated to a BTS� A hundred complementary BTS locations
are then randomly selected� associated to new ��� �� point cells �fewer when clipped by
the border of the area�� and shu*ed with the �� primary ones� By construction� the best
solution for this instance is that with the �� primary BTSs that serves ���) of the area�

The �rst real�case instance� referenced as Vosges��� � includes a set of ��� user�
provided potential sites� These sites are located on a ����� km� digital terrain model
of the French region �Les Vosges� that is discretized on a ���� ��� point grid��

The second real�case instance� referenced as Geneva�� � includes a set of �� user�
provided potential sites� These sites are located on a ��� � ��� point zone modeling a

�The radio wave propagation prediction software used in rural environment is provided by
T	el	edi
usion de France �France Telecom group��

�One pixel represents a ���� ��� m square�

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

� km� district of the Swiss city of Geneva��

Figure ��� shows the service area that would be obtained if transceivers were installed
at every potential site for Squares���� Vosges���� and Geneva���

�a� �b� �c�

Figure ���� Representation of the service that would be obtained if all the BTSs were
installed at every potential site� ��� BTS on the arti�cial area of the Squares��� data
set
a
� ��� BTSs on the French region �Les Vosges�
b
� and �� in a district of the city
of Geneva
c
� White locations are not served� black locations are served once� and gray
locations are served several times�

The last real�case instance is used for experimenting on big instance of problems� It
is referenced as Vosges��� and includes ��� potential sites located on a ���� ��� point
zone modeling a ������ km� area of the Vosges region�

����� Modeling of the service�

The relationship between each pixelized location served and the BTSs is naturally mod�
eled as a bipartite graph whose nodes represent either BTSs or geographical locations
�pixels� ����� When many geographical locations must be allowed for� such a graph tends
to be huge �see Figure ����a��� A smart way to reduce the graph size without loosing
any useful information is to build a bipartite graph whose nodes represent either BTSs
or intercells ����� An intercell is de�ned as the set of geographical locations that are
potentially served by exactly the same set of BTSs� For each intercell node� one only
needs to encode the cost of this intercell� that is the number of locations it contains �see
Figure ����b��� The bipartite graph hence obtained can be smaller than the former one
by more than one order of magnitude�

The bipartite graph �simple or with intercells� is used to compute the service ratio

�One pixel represents a �� � m square�

���� PROBLEM MODELING ��

BTS A BTS B

�a�

BTS A BTS B

��
�

��

c�
c�

c�

�b�

Figure ���� A bipartite graph that models � BTSs and their associated cells cellA and cellB�
The pixelized locations can be all represented
a
 or they can be gathered in � intercells
c� ! cellA � cellB� c� ! cellA � cellB� c� ! cellB � cellA
b
�

produced by any subset s of BTSs�

service ratio !
surface of area served by s

surface of the maximum served area
�����

where the �maximum served area� is the area that is served when every BTS of the
initial set is taken� The algorithm is simple� the adjacent nodes of the BTS nodes in s
are visited and their values are summed up� hence the surface of the served area� Such a
computation is likely to be done very often in an EA since it must evaluate the quality of
all the numerous individuals considered� Moreover� it is clear that the size of the graph
in
uences directly the time needed to compute the service ratio� hence the interest to
reduce it�

����� Problem representation using set systems

A set system �X��� is a set X of n elements� with a collection � of m subsets of X called
ranges� Let us consider a set system �X��� where X is the set of cells and � is the set
of all intercells� Figure ��� depicts such a set system� For example� the notation fa� bg
represents the intercell �covered� exclusively by cell a and cell b �i�e�� �a � b�� �c � d���

A weighted set system is a set system in which each range R � � is given a cost
cR �e�g�� cR is the number of pixels contained by the intercell R�� For each element
x � X� let x� ! fR � �jx � Rg denote the set of ranges in which x is included� Denote
c�x�� !

P
R�x�

cR and c�X� !
P

x�X c�x��

����	 Hitting set and set cover problems

A hitting set of the set system �X��� is a subset H � X of cells such that H has a
non�empty intersection with every intercell R in �� Roughly speaking� this means that
each pixelized location of the whole area is served by at least one BTS� The transceiver

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

c

b,d

b,d

d

b

d

b,c b,c

b,d a,b

a,b,c

a,c

X ! fa� b� c� dg

� ! ffbg� fcg� fdg�
fa� bg� fa� cg� fb� cg�
fb� dg� fa� b� cgg

Figure ���� A set system of n ! � cells inducing m ! � intercells�

siting problem recalls the minimum Hitting Set Problem �HSP� whose NP�completeness
�shown by Karp ����� dates back the early seventies� However� it slightly di	ers from
minimum HSP because the goal is to select a satisfactory subset of BTSs that ensures
a service in almost all the area� This means that non�combinatorial parameters such as
the target service ratio �tsr � ��� ��� are also to be taken into account in practice� tsr
expresses the ratio of the area that is targeted to be served over the maximum area that
can be served� For each cell x � X� let x� ! fR � �jx � Rg denote the set of intercells
in which x is included� Let X� ! fx�jx � Xg be the set of groups of all intercells� A
covering set of a set system ��� X�� is a subset of X �

� � X� such that �x��X
�
�

! ��
A minimum set cover problem
SCP
 asks for a minimum�size covering set X�min such
that jX�minj ! min�jX �

�j� X �
� � X� and �x��X

�
�
! ��� The set system ��� X�� is said to

be the dual of �X��� since a solution to HSP implies a solution to SCP and vice�versa�
Denote by k�HSP the HSP where each range has at most k BTSs and by k�SCP the SCP
where each cell covers at most k intercells�

The dimension of the search space is ��� where � is the number of potential BTS
sites� In order to have an idea of the order of magnitude it implies� let us take an initial
set that contains ��� potential sites� the size of the search space is then ���� � ����� It
means that� if checking a candidate takes � millisecond then ���� years are necessary to
check all of them� Even if� for example� only the solutions with �� BTSs are considered�
���� years	 are still necessary to check all of them� In comparison� the Universe is
�only� ������ years old according to current theory+ This illustrates the impossibility
of enumerating the search space of an instance of the transceiver siting problem� even
with only ��� potential BTS sites� Di	erent heuristics are considered in the following
sections in order to treat this problem�

��� Greedy�like algorithms

A simple greedy�like algorithm was used as a basis for the comparison with the di	erent
parallel EAs that were experimented� Introduced by Chv
atal ���� and thoroughly ana�

�The binomial coe�cient ���

�

� � ������ gives the number of solutions with �� BTSs taken among

��� potential ones� hence � ���� years to check every solution if the evaluation of each of them takes
� millisecond�

���� EXPERIMENTAL CONDITIONS ��

lyzed by Slav
,k ����� the natural greedy�like heuristic achieves a performance ratio
 of
log k � log log k $ -���� where k is the maximum number of intercells lying in a BTS�
Note that if k � � then SCP is equivalent to the Edge Cover problem and therefore can
be solved in O�n

p
m��time using a maximum matching in a bipartite graph ����� This ap�

proach was used to improve the greedy�like heuristic and k�HSP ����� Recently� Feige ����
proved that unless NP � DTIME�nlog log n� there is no polynomial�time algorithm that
guarantees a �� � �� log k performance ratio� This plainly explains the intractability of
HSP� and dually of SCP� from both the theoretical and practical point of view�

The partial hitting set cover problem
PHSP
 consists in hitting� with as few cells
as possible� at least j�jr intercells for a given hitting ratio r � ��� ��� PHSP has also
been proven NP�complete by Kearns ���� as soon as � � r � �� Kearns used a variant of
the greedy�like heuristic with performance ratio �H�m� $ �� where H�c� !

Pc
i��

�
i
�

log c $ � is the cth harmonic number� Slav
,k ���� lowered the performance ratio to
minfH�drme�� H�k�g�

The greedy�like heuristic can be naturally extended to weighted set systems and runs
in O�nm� time and space for dense �resp� O�n logn� for sparse� i�e�� m ! O�n�� set
systems as shown below �See Algorithm ���� There exists various extensions of HSP that
lead to di	erent heuristics and hardness results� Refer to ���� for an up�to�date survey�

Algorithm ��
�� Greedy ��
�� Implements Kearn�s greedy�like heuristic ��
�� tsr is the target service ratio ��
�� rest is the surface yet to be served in order to obtain a tsr�service ��
�� X � �
" rest � tsr
�� Initialize the current solution X � with � BTS ��
�� while less than tsr of the surface is served by X � do
�� Add xi �the i

th BTS� to X � such that xi maximizes min�rest� c�xi�nX �
���

�� Update rest � tsr �Px�X� c�x�

��� Experimental conditions

����� Network con�guration for speed�up measurements

The network used for the speed�up measurements contains �� groups of � Sparc�� work�
stations �with ��MB of RAM�� They are connected by one Ethernet HUB within each
group� The groups are then connected to a Sparc�����E server �with � processors and
���MB of RAM� by FDDI via a HUB�FDDI� The use of any other computer for ex�
periments will be clearly mentioned� The experiments were made at night and during

�The performance ratio is the ratio between the value of a given solution and any optimal solution�

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

week�ends in order to minimize disruptions of the network �e�g�� the side e	ects of its
use by many other users and system management routines�� The programs were exe�
cuted several times �from two to ten times depending on the experiment�� but only the
minimum time was eventually considered for the speed�up computation�

����� In�uence of islands on execution time

As explained in ����� when a step of a GA has a complexity of -�n�� �e�g�� when the
selection step is based on a roulette wheel�� the number of operations achieved during
this step is proportional to the square of the number of individuals per island� Actually�
when the number of islands is doubled� the number of individuals per island is divided
by � and the computation load of the selection step is divided by �� ! �� Consequently�
the execution of an IGA with � islands of n individuals is quicker than that of a GA with
a population of �� n individuals� The time factor gained is at most ��

Figure ��� shows the time factor that can be achieved �without any parallelization�
on a single PE by simply distributing a �xed number of individuals on islands�

0

0.5

1

1.5

2

2.5

3

3.5

4

124 8 16 32 64

T
im

e
fa

ct
or

Number of islands (on 1 PE)

IGA for Vosges150

64 individuals
128 individuals
256 individuals
384 individuals
512 individuals

Figure ���� Factor gained
in terms of time
 when a given number of individuals is
distributed on islands
the program is sequential and runs on a single PE
�

Let us suppose that the number of islands increases with the number of PEs during
the speed�up measurement of a parallel EA� The speed�up hence achieved is not only
due to the parallelization� but also to the time factor gained by increasing the number
of islands� The speed�up achieved is thus arti�cially super�linear or at least excellent
�i�e�� near�linear��

The notion of island is purely algorithmic and the use of islands should not in
uence
speed�up measurements on several PEs� Consequently� the number of islands is kept
constant during each speed�up measurement presented in this work �whatever the number

	Each measurement was done ten times for the �rst experiments� but since the disruptions of the
network were low it turned out that punctual checks were su�cient�

���� EXPERIMENTAL CONDITIONS ��

of PEs is�� Besides� the use of islands is always clearly distinguished from that of parallel
EAs� This choice is coherent with the parallelization rules # introduced the previous
chapter # that suppose that the parallelization does not change the behavior of the
original sequential algorithm �cf� page ����

The former precision is necessary because the way to compute the speed�up of parallel
EAs has raised signi�cant controversy in the GA community ����� Since the standard GA
is often taken as a basis in many studies� the following cases can be found in the GA
literature� in ���� the speed�up compares the sequential time of a standard GA to the
parallel time of an IGA with p islands distributed on p PEs �by keeping the total number
of individuals constant�� and in ���� the number of islands together with the total number
of individuals changes with the number of PEs� In the latter case the aim is to have the
same expected quality of solution with both the sequential GA and the parallel IGA�
These situations are only possible because of the lack of rigor in the de�nitions of the
speed�up enumerated in ������ In this work� the speed�up is computed by measuring the
sequential and the parallel time of a same program parameterized by the number of PEs
�as stated page ���� It is therefore possible to estimate the speed�up gained to obtain
the same results in sequential and in parallel�

It can be observed in Figure ��� that� as expected� the factor gained when doubling
the number of islands is within ��� ��� The time factor is actually at most ���� This can
be explained by two phenomena�

� Only one part of the algorithm has a complexity of -�n��� while the remainder has
a lower complexity� Thus� only one part of the algorithm contributes to gain time�

� The amount of time required by the migration step increases with the number of
islands� and this computational overhead minimizes the time factor gained�

The second phenomenon can also explain why the time factor decreases when the number
of islands increases�

All this discussion only deals with GAs� It can however apply to any EA that has at
least a step with a complexity higher or equal to -�n���

����� The choice of the number of generations

It was tried to compute speed�ups by measuring sequential time that do not exceed
�� hours� This could be done by reducing the number of generations when the execution
time of an EA was too long� Consequently� the number of generations remains constant
during each speed�up measurement� but it can vary from an experiment to another� It
was however checked that the number of generations be large enough to provide accurate
measurements� Since this parameter has no in
uence on the speed�up measurements� it
is not mentioned in the remainder �except in the sections dealt with the quality of the
solutions obtained��

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

��� Parallel island�based genetic algorithms

The IGA used here does not rely directly on the notion of set system but it still uses the
bipartite graph introduced in ����� to compute the service ratio�

4

1
0

3

2

5

1
0
0
1
0
0

migration

�a� �b� �c�

Figure ����
a
 A problem instance with � potential BTSs is proposed here� An example
of a candidate with two BTSs
associated to black cells
 is represented on a dummy
region�
b
 The individual that models this candidate is encoded by a bit�string�
c
 Three
populations of such individuals evolve according to the four phases of a genetic algorithm

cf Section �����
�

A generational replacement GA was developed to solve the radio coverage problem
introduced in Section ���� In the implementation� the chromosome�like bit string repre�
sents the whole set of possible BTS locations� Whether a location is actually selected in
a potential solution depends on the value of the corresponding entry in the bit string �see
Figure ����a� and ����b���

The individuals that form the initial population are generated randomly� The selection
operator is implemented as a roulette wheel selection� the population is mapped onto a
biased roulette wheel where each individual is represented by a slot sized in proportion
to its �tness� The wheel is then repeatedly spun to select the individuals to be put in the
intermediate population� achieving in this way a stochastic sampling with replacement�
The crossover and mutation operators are the one�point crossover and the mutation
operator described in ����� with a ��) probability to be applied at an individual at each
generation�� �i�e�� pc ! pm ! ����� The execution terminates after a prede�ned number
of generations without any consideration of the convergence speed of the algorithm� This
permits to change some parameters �e�g�� the number of islands� without changing the
number of generations computed and thus to fairly compare the execution time of the
GA with di	erent parameter tunings�

The following objective function is taken as the �tness function in order to assign a

�
The role of this parameter is discussed in the last section of this chapter �page �����

���� PARALLEL ISLAND�BASED GENETIC ALGORITHMS ��

�tness value to each individual�

f !
�service ratio�	

number of BTSs used
�����

where � is a parameter that can be tuned to favor the service ratio with respect to the
number of BTSs used� For example� Figure ��� shows the in
uence of this parameter on
the characteristics of the results returned by the IGA for the Vosges��� data set���

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10

C
ha

ra
ct

er
is

tic
s

of
 s

ol
ut

io
ns

Service ratio (in %)
Number of BTSs

���

Figure ���� In�uence of the value of � on the characteristics of the solution found
number
of BTSs used and service ratio obtained
� The test was done with the Vosges��� data

cf� page ��
�

It shows that�

� for ��� � � � � only one BTS is chosen �that with the largest cell��

� for � � � � ��� the coverage is not acceptable �� ��)��

� for ��� � � � � the coverage grows quickly while the number of BTSs grows slowly�

� for � � � � �� the coverage remains almost constant while the number of BTSs
keeps growing�

A good value for � should thus be chosen in ����� ��� When � ! �� solutions returned by
the IGA give around ��) of service ratio� which is considered as a satisfactory result by
telecommunication specialists� This value will thus be used in the remainder of the tests�

The speed�up achieved by the IGA with ��� individuals distributed on �� islands for
the Vosges��� data set is shown in Figure ���� A very good ����) e�ciency is observed
on �� PEs� Figures ����a� and ����b� show the speed�up for the same experiment� in
the �rst �gure� only the numbers of PEs that are divisors of the number of islands are
considered �i�e�� �� �� �� �� ��� ��� ��� ��� �� PEs for �� islands�� whereas in the second �gure
any number of PEs is considered� The number of islands is not necessarily the same on

��A similar graph �not shown here� was obtained with a greedy�like algorithm�

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

IGA: 80 islands of 8 individuals
100% efficiency

Experimental

�a�

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

IGA: 80 islands of 8 individuals
100% efficiency

Theoretical
Experimental

�b�

Figure ���� Speed�up achieved with ��� individuals distributed on �� islands for the Vos�
ges��� data set�
a
 Only the numbers of PEs p that result in a fair load balancing are
considered
i�e�� �� mod p ! �
� hence a near�linear graph�
b
 The number of PEs is
arbitrary� hence a graph with steps� The theoretical graph is based on Equation ����
with I ! ���

each PE �as explained in ������� and the PEs with the most islands bound the speed�up
that can be achieved� hence a speed�up graph with steps�

Figure ��� shows that a graph is not necessarily an objective representation of the
reality� and that its interpretation must be done carefully with respect to the experimental
framework�

Figure ����b� compares the experimental speed�up to the theoretical one based on

Equation ���� �assuming a null communication cost�� Each time
l

�
p

m
�!
l

�
p��

m
there is a

step on the theoretical graph� Three phenomena explain why the steps of the theoretical
graph are less pronounced in the experimental one�

� When the number of PEs increases� the computation time of each PE decreases
while the communication time remains constant �one individual migrates from each
PE���� Thus� the ratio tcommunication

tcomputation
increases and the speed�up is lowered accordingly�

� The speed�up points could not be measured for every number of PEs��� hence a
gentle transition from one step to another �this explains why the experimental
graph sometimes crosses the theoretical one� even if experimental points are always
under the theoretical graph��

��The total amount of communications increases but since these communications occur simultaneously�
the communication time remains constant�

��Because of the unavailability of the network�

���� PARALLEL ISLAND�BASED GENETIC ALGORITHMS ��

� When the number of islands I is not a multiple of the number of PEs p� then the

PEs that handle
j
I
p

k
islands can communicate while the others �with

l
I
p

m
islands�

end their computation� The apparent communication load is thus limited to that of
the PEs with the most islands� Thus� when p increases the speed�up also increases�
hence the non�
at steps observed in Figure ����b��

Steps can however be identi�ed on the experimental graph� and they �t well the theoret�
ical steps �i�e�� their position in terms of number of PEs is coherent��

Figure ���� shows that the speed�up is a little bit higher when a large instance of prob�
lem is treated� When running the IGA in parallel� a speed�up of up to ���� �resp� �����
was observed on �� workstations with ��� individuals distributed on �� islands for the
Vosges��� �resp� Vosges��� � data set� Figure ���� also shows that the speed�up is on
average the same for any number of islands� However� for a given number of islands� the
highest speed�up is always achieved with one island per PE�

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60 70 80 90

Sp
ee

d-
up

Number of PEs

IGA for Vosges150

20 islands
40 islands
80 islands

160 islands

�a�

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60 70 80 90

Sp
ee

d-
up

Number of PEs

IGA for Vosges600

20 islands
40 islands
80 islands

160 islands

�b�

Figure ����� Speed�ups achieved with ��� individuals distributed on �� to ��� islands for
Vosges���
a
 and Vosges���
b
�

This experiment shows that� when solving the transceiver siting problem with the
IGA� it is always pro�table to use the maximum number of usable PEs� that is� the same
number of PEs as that of islands�

�� CHAPTER �� TRANSCEIVER SITING APPLICATION

��� Parallel island�based ant systems

The parallel island�based ant system used here was described in ������ It is based on
Algorithm �� In the context of the transceiver siting problem� the notion of transition
�as de�ned in ������ is not considered since the probability of choosing a BTS does
not depend on the choice of the last BTS� However� this probability still depends on the
partial solution represented by the ant under construction� only available BTSs �i�e�� that
are not part of the candidate modeled by an ant under construction� have a non�null
probability to be chosen� Hence� the probability pj of adding a BTS j to an ant that
is being constructed replaces the transition probability pij as de�ned in Equations ���
and ��� �page ����

pj !

�j ��

�
jP

l�available BTS��

�
l
���

l
�
if BTS j is available� pj ! � otherwise �����

with �j�t$ n� ! � � �j�t� $ %�j�t� t$ n� �����

and %�j !
�
�jP
l�
�l

with %� �j !
P

k %�
k
j �����

The speed�ups achieved experimentally with one colony of ��� ants� with � islands of
�� ants� and with �� islands of � ants are respectively shown in Figures �����a�� �����b�
and �����a� for the Vosges��� data set� The theoretical speed�ups that would be achieved
if the cost of the communications was null and if every island had exactly the same
computational load is also shown in each �gure� Figure �����b� compares these theoretical
speed�ups� It shows the di	erent width of the speed�up steps with respect to the number
of islands used� It thus illustrates the di	erent shapes of the experimental speed�ups�
It can be noted that the experimental graphs �t the theoretical ones� The e�ciency on
�� workstations is ��) with one colony and ��) with � or �� islands� This e�ciency can
be considered as very good� considering that two models of parallelization coexist��� and
that a large number of workstations �not dedicated to high performance computing� are
used�

The speed�ups achieved with one colony of ��� ants and with � islands of �� ants
were measured again for every number of PEs up to �� �see Figure ������ Since the mea�
surements required to compute these speed�ups for any number of workstations are very
time consuming� a network of Sparc��� workstations was used� Moreover this permits to
check the behavior of the parallel AS and IAS on a network with di	erent characteristics
�Sparc��� processors are about � times faster than Sparc�� processors� while the network
links are the same as in the Sparc�� network����

��The farmer�worker model used to update trails coexists with the migration of ants between remote
islands�

��Cf� Section ������

���� PARALLEL ISLAND�BASED ANT SYSTEMS ��

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

AS: 160 ants
Theoretical

Experimental

�a�

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

IAS: 4 islands of 40 ants
Theoretical

Experimental

�b�

Figure ����� Speed�ups achieved with ��� ants in one colony
a
 and distributed on � is�
lands
b
 for Vosges���� They are compared to the theoretical speed�ups assuming a null
communication cost
cf� Equations ���� and ����
�

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

IAS: 40 islands of 4 ants
Theoretical

Experimental

�a�

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

T
he

or
et

ic
al

 s
pe

ed
-u

p

Number of PEs

AS and IAS: 160 ants
1 colony
4 islands

40 islands

�b�

Figure �����
a
 Speed�up achieved with ��� ants distributed on �� islands for the Vos�
ges��� data set�
b
 Comparison of the theoretical speed�ups assuming a null communi�
cation cost
cf� Equations ���� and ����
 for di�erent number of islands�

��� CHAPTER �� TRANSCEIVER SITING APPLICATION

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Sp
ee

d-
up

Number of PEs

IAS: 4 islands of 40 ants
Theoretical

Experimental

�a�

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Sp
ee

d-
up

Number of PEs

AS: 160 ants
Theoretical

Experimental

�b�

Figure ����� Speed�ups achieved with ��� ants in one colony
a
 and distributed on � is�
lands
b
 for Vosges����

In Figure �����a�� the speed�up remains almost constant�� between �� and �� PEs�
whereas in Figure �����a� it increases of ��) in the same range� The same observation
can be made when comparing Figure �����b� and Figure �����b�� The �
attening� of
the speed�up graph can be explained by the use of faster workstations in the second
experiment than in the �rst one� Indeed� if the computation part of the algorithm is
performed quicker while the communication load is the same� then the ratio tcommunication

tcomputation

increases and the speed�up reaches its maximum sooner�

��	 Parallel island�based genetic ant algorithm

Figure ���� shows the speed�ups achieved by the parallel IGAA based on Algorithm �
�cf� Section ������ with ��� individuals distributed on islands� With � islands of �� in�
dividuals each� the e�ciency is good ���) on �� workstations�� but with �� islands of
� individuals each the e�ciency is rather poor compared to those of the tests made with
IGA and IAS �only �) on �� workstations and �) on �� workstations�� These results can
be explained by a �rst observation� an AS generation is ��� times slower to be processed
than a GA generation with the Vosges��� data set�	� Between I and I $ n � � PEs�
the speed�up is thus mainly that of an AS� Since the PE with the ant island bounds
the execution time� the speed�up is negligible when the number of PEs is less than the
number of islands�

��The speed�up varies within ������ ������
��This estimation was made after comparing the execution time of the AS and the GA run in sequential

during �� generations with the Vosges��� data set�

��	� QUALITY OF THE RESULTS ���

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

Sp
ee

d-
up

Number of PEs

IGAA: 4 islands of 40 individuals

�a�

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

Sp
ee

d-
up

Number of PEs

IGAA: 40 islands of 4 individuals

�b�

Figure ����� Speed�ups achieved with ��� individuals distributed on � islands
a
 and
�� islands
b
 for Vosges����

When the ��� ants are distributed on �� islands� the computation of the only ant
island represents ��) of the total computation� hence a maximum theoretical speed�up
of ���� on �� PEs�
�

From this experiment� it can be deduced that the IGAA should be parallelized by
partitioning the ant island without distributing the others� hence a parallelization level

L��I � ����L�

�h
n

p�I��

i�
instead of L������L�

�h
n

p�I��

i�
� The speed�up would then be

that of the AS with one colony of n ants� The speed�up shown in Figure �����a� �resp� Fig�
ure �����b�� would then start to increase when using � PEs instead of � �resp� ���� The
maximum number of PEs would then be bounded by n $ ��

This experiment shows the limit of the parallelization rules based exclusively on EA
ingredients�

��
 Quality of the results

This section discusses the quality of the results obtained with the algorithms discussed
in this chapter� Although the aim is neither to �nd the best algorithm� nor to �nd the
best tuning for the present problem� it is interesting to have an idea of the e�ciency of
these algorithms in terms of quality of solution and in terms of execution time� Indeed�
it would be useless to parallelize an algorithm that requires a high computational load in
order to �nd solutions of the same quality as that of a simple greedy�like algorithm that
runs ��� times faster�

��When �� PEs are used� the ant island is handled by a single PE�

��� CHAPTER �� TRANSCEIVER SITING APPLICATION

��
�� Results

Greedy gives quite good results in the two real cases and does not need to be tuned�
However� with the Squares��� data set it returns a rather bad solution with �� BTSs for
����) of service �see Figure �����a��� The optimal solution has only �� BTSs for ���)
of service�

The IGA runs with ��� individuals that evolve during ��� generations� Experience
shows that it gives better results when the probabilities of mutation and crossover are
high �typically pm� pc � ����� ������ but that a �ner tuning has insigni�cant e	ects�

The results obtained with the IGA for the Squares��� data set are very good �����
With �� islands� the IGA returned sometimes the optimal solution shown in Figure �����b��
The rest of the time� solutions were always very close to the optimal one� Figure �����c�
shows a typical solution returned by the IGA with �� islands�

�a� �b� �c�

Figure �����
a
 The solution returned by Greedy for the Squares��� data set� It has
�� BTS for ����� of service�
b
 The optimal solution that was sometimes returned by the
IGA with �� islands�
c
 Example of a typical solution found by the IGA with �� islands�
It has �� BTS for ��� of service�

Figure �����a� and �����b� show examples of the best solutions that were found by
IGA con�gured with �� islands of � individuals� They are typical of the kind of solution
returned by every algorithm� It can be noticed that the number of locations that are
covered more than once is very small� This side e	ect is due to the fact that the algorithms
tend to minimize the overlaps between cells�

Figure ���� shows the characteristics of solutions that were obtained by the di	erent
algorithms� A set of randomized solutions was �rst computed in order to serve as a basis
for comparison� The di	erent solutions obtained by IGA are due to several runs with

��	� QUALITY OF THE RESULTS ���

�a� �b�

Figure ����� Results returned by IGA with �� islands of � individuals each� For a service
ratio of ���� the solutions have� �� BTSs for the Vosges��� data set
a
 and �� BTSs
for the Geneva�� data set
b
� White locations are not served� black locations are served
once� and gray locations are served several times�

di	erent random seeds� Since at each step of Greedy� a partial solution exists� the
evolution of the service ratio can be observed for any number of BTSs selected� It can
be noticed that the quality of the solutions returned by the IGA are better than that
of Greedy� The di	erence is more signi�cant with the Geneva�� data set� It can be
explained by the shape of the cells that are more polygonal� because it was observed that
the Squares��� data set shows the most signi�cant di	erence between these algorithms�

The solutions returned by the AS and the IAS are in the same quality range� from ��
to �� BTSs for ��) of service with the Vosges��� data set and �� BTSs for ��) of service
with the Geneva�� data set� They are on average not as good as those returned by the
IGA with �� islands� but better than those returned by the GA� Again� experiments
were done to have a general idea of the behavior of these algorithms and no �ne tuning
was tried���

Greedy is ��� times to ������ times quicker than EAs and returns on average solu�
tions of the same quality� Yet slightly better solutions can be found by the IGA� This
di	erence� even if small� is very interesting in terms of cost�� for telecommunication oper�
ators� Moreover� the results returned by EAs have a constant quality� Experience shows
that when an optimal solution is known� it can be found by the IGA� whereas Greedy
can fall in bad� yet attractive� local optima�

�	The AS parameters settings are
 � � �� � � �� � � ��� with ��� ants that evolve during ��� gener�
ations�

�
A BTS is very expensive� and the cost of the installation of a mobile radio network is very high�

��� CHAPTER �� TRANSCEIVER SITING APPLICATION

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

60 80 100 120 140

Se
rv

ic
e

ra
tio

Number of BTSs

IGA
Greedy

Random

�a�

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

20 30 40 50 60 70 80 90

Se
rv

ic
e

ra
tio

Number of BTSs

IGA
Greedy

Random

�b�

Figure ����� Service ratio against the number of BTSs selected by three algorithms� the
IGA� Greedy� and at random�
a
 for the Vosges��� data set� and
b
 for the Geneva��
data set�

��
�� In�uence of islands on the results

In order to observe the in
uence of the number of islands in the IGA �Algorithm ���
the program was used with only one island� It results in a standard GA �as that of
Algorithm ��� An example of convergence speed observation with and without islands� is
shown in Figure �����a� �a more detailed study can be found in ���� ����� It is clear that
the IGA converges faster than the GA�

A similar experiment� whose result is shown in Figure �����b�� shows the convergence
speed of the IAS �Algorithm �� with and without islands� It can be observed that the
behavior of the algorithm is not changed signi�cantly by the use of islands� Even if no
improvement of the algorithm can be noticed� as shown above with the IGA� this ob�
servation is a positive point in this analysis� Indeed� since the AS and the IAS �with
�� islands� return similar solutions and have a similar speed�up on �� PEs �see Fig�
ures �����a� and �����a��� and since an IAS is more di�cult to implement than an AS� it
is wiser to parallelize an AS than an IAS �in the present case��

��
�� Results of other algorithms

While tackling the transceiver siting problem� some other algorithms� that are not ana�
lyzed in details in this thesis� were also tried� Here is a brief description of their results�

A darwinism algorithm ���� based on the search of ��nets�� �see ���� for a description
of the algorithm� was studied because of its originality� and because of its similitude with
EAs �dozens of potential solutions are generated based on probabilistic rules�� However�

��If a subset N � X intersects each set R of � of size bigger than � � jX j� then N is called an ��net�

��	� QUALITY OF THE RESULTS ���

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0 50 100 150 200 250 300

Fi
tn

es
s

va
lu

e
(f

or
 e

ac
h

is
la

nd
)

Generation number

GA and IGA

With 40 islands
Without islands

�a�

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0 50 100 150 200 250 300

Fi
tn

es
s

va
lu

e
(f

or
 e

ac
h

is
la

nd
)

Generation number

AS and IAS

With 40 islands
Without islands

�b�

Figure ����� Comparison of the convergence speed� with and without islands� of a genetic
algorithm
a
 and of an ant system
b
 operating on ��� individuals
or ants
�

it was not further used or parallelized because it currently shows poor results�

Greedy was modi�ed in order to be non�deterministic �i�e�� in Algorithm ��� xi was
added to X � by following a biased randomized rule instead of maximizing the remaining
served zone� and it was run hundreds of time� The results were not as good as those
obtained with Greedy�

��
�� Summary

The conclusion of these observations is that EAs are not well suited to give quick ap�
proximative solutions to the transceiver siting problem� However� considering that�

� a good speed�up can be achieved with a proper parallelization�

� the quality of the solutions returned is constant�

� an increase of the performance is possible� and it can have important consequences
�e�g�� on the cost of the radio network��

� among the EAs� IGA returned the best results�

the parallel IGA is the most reliable algorithm for solving the transceiver siting problem
in an industrial environment�

��� CHAPTER �� TRANSCEIVER SITING APPLICATION

��
�� Cooperation with other projects

ParaGene� the program implementing this parallel IGA� is now used as the main optimiza�
tion engine in the STORMS�� radio network optimization software ���� ���� It is part of
a complex computation chain taking advantage of parallelism at several levels� ���� gives
more information about this computation chain that integrates UNIX pipe commands
for synchronization� farmer�worker programs for pre�computation� a client�server web
interface� and ParaGene�

A cooperation was also organized with the project PERFO�� �Performance modeling
of distributed MIMD architectures ������ ParaGene was used as a test�bench in this project
that aimed at predicting performances of irregular parallel programs�

��Cf� page ���
��PERFO was funded by the Swiss National Science Foundation �grants ����������������� ���������

To sail is to accept constraints
that we have chosen� It is a privilege�

M	emoires du large� �����
Eric Tabarly� sailor
���������

Chapter �

Graph coloring application

This chapter describes the classical graph coloring problem� and di	erent programs used
to solve it� The programs are based on the parallel EAs described in Section ��� and
on simple heuristics used for comparison� The following sections elaborate on speed�ups
achieved experimentally� and the last one overviews the quality of the results returned
by each algorithm�

	�� De�nition of the problem

Let us suppose a non�oriented graph G�V�E� with N vertices vi � V� i � f�� �� � � � � N��g�
and M edges eij ! �vi� vj� ! �vj� vi� � E� N �vi� denotes the set of adjacent vertices
of vi in a graph G� that is� vj � N �vi� � 	eij � E� Let us take a set of q colors
c � f�� �� � � � � q � �g� When a vertex v is assigned a color c� it is said to be colored
with c� It follows that the coloring of a graph is the assignment of a color to each of its
vertices� Let us de�ne a con
ict as a pair of adjacent vertices that are colored with the
same color� And let us de�ne a q�coloring of a graph G as a coloring of G with q colors
and no con
ict�

The graph coloring problem is a NP�hard problem� Here are two di	erent manners to
express it�

�� �Given a graph G and q � N colors� Find a coloring of G with the minimum number
of con
icts ��

�� �What is the minimum number of colors � such that a ��coloring of G exists ��
��G� is called the chromatic number of G�

The �rst expression is chosen to de�ne the problem that is treated in the remainder of
this chapter�

Figure ����b� gives an example of a graph coloring with two colors� In this example�
one con
ict can be noticed between vertex � and vertex � �which are both black��

���

��� CHAPTER
� GRAPH COLORING APPLICATION

�

�

�

�

�

�

	

�a�

�

�

�

�

�

�

	

�b�

Figure ���� Graph G is colored with two colors� In the solution shown on the right�
a con�ict remains unsolved between the adjacent vertices � and �� indeed there is no
��coloring of this graph� ��G� ! ��

	�� Examples of instances

A practical application of this problem is the frequency allocation problem� Let us
suppose that each vertex models an antenna� and that G models a radio network such
that two vertices of G are linked if and only if the corresponding antennas can interfere
with each other� Let us suppose now that frequencies are modeled by colors� The
problem of allocating a frequency to each antenna such that the amount of interferences
is minimum is equivalent to the problem of coloring G such that the number of con
icts is
minimum� Since the number of allowed frequencies is usually low� this problem is crucial
for telecommunication operators�� The algorithms could thus have been tested by taking
radio networks planned in the previous chapter as input data� However� they are tested
on graphs taken from a test�bench library ����� that provides their minimal q�coloring
known� This makes it possible to estimate the quality of the results obtained� and thus
to have a precise idea of the performance of each algorithm� Even if the quality of the
results is not a major concern in this work� such a comparison is instructive on the utility
of EAs to solve a graph coloring problem� Results are all discussed in Section ����

Five problem instances of the library ����� were chosen� G�� G� and G� were chosen
for their di�culty to be colored by a constructive algorithm while G� and G� were chosen
for their easiness to be colored� G� was used for every speed�up analysis while the other
graphs were only used in order to compare the quality of the solutions obtained with
the di	erent algorithms dealt in this thesis �cf� Section ����� The characteristics of the
problem instances are�

G� � ��� vertices� ���� edges� and an optimal coloring known with � colors� It is a
Leighton graph ���� ��le le��� �a�col from C� Morgenstern��

G� � ��� vertices� ����� edges� and an optimal coloring known with �� colors� It is
also a Leighton graph ���� ��le le��� ��d�col from C� Morgenstern��

�New technologies using a randomized dynamic allocation of frequencies� called frequency hopping�
tends to solve this problem for mobile phones� but the problem is still actual for other radio networks
�television� radio� etc���

�When the chromatic number of these graphs is known� it is given�

��� GREEDY�LIKE ALGORITHM ���

G� � ��� vertices� ���� edges� and an optimal coloring known with �� colors� It has
a natural interpretation� �is it possible to place �� sets of �� queens on a ��� ��
chess�board so that no two queens of the same set are in the same row� column or
diagonal � ��le queen�� ���col from M� Trick��

G� � ��� vertices� ���� edges� and an optimal coloring known with �� colors� It is based
on a problem of register allocation for variables in real codes ��le fpsol��i���col
from G� Lewandowski��

G� � �� vertices� ��� edges� and an optimal coloring known with � colors� This graph
is said di�cult to color because it is triangle free ��le myciel��col from M� Trick��
It was however observed during� that this graph was easily colored with the simple
greedy�like algorithm used in this work�

The experimental conditions exposed in Section ��� are still valid for this chapter�
They include the de�nition of the speed�up and the description of the network of work�
stations used for time measurements�

	�� Greedy�like algorithm

As in the previous chapter� a greedy�like algorithm was used to estimate the di�culty of
the instances and the quality of the solutions obtained with the di	erent EAs�

Algorithm �� is based on a very simple� although e�cient in practice� sequential
technique that is repeated N times�� a not yet colored vertex is chosen at random� it
is then colored in such a way that the number of con
icts is minimum �at best it is
assigned a color that is not yet assigned to any of its adjacent vertices�� On average�
such an algorithm colors a graph with a few hundreds of vertices in less than a second
�cf� Section �����

Algorithm ��
�� Coloring graph greedy ��
�� for each vertex v of G
�� for each color c � ��� q � ��
�� Set�c� � fv� � N �v�� color�v�� ! cg
�� assign color c to vertex v such that jSet�c�j ! minc�����q��� jSet�c��j

	�� Parallel island�based genetic algorithms

A candidate to the coloring problem is modeled by an individual whose genotype is
encoded as a vector with integer components� The size of the genotype �i�e�� the vector

�N is the number of vertices of a graph G�

��� CHAPTER
� GRAPH COLORING APPLICATION

length� is the number of vertices of the graph to be colored� Each component of this
vector models the color of its associated vertex and it is thus in the range ��� q � ���

This modeling is rather simple compared to some optimized encoding found in the
literature ���� ��� but the goal is not here to discover the best coloring graph algorithm�
The goal is however twofold� �rst to con�rm the results of the previous chapter in terms
of speed�up on a totally di	erent problem� and second to test the
exibility of the soft�
ware library APPEAL described in Section ����

The speed�up achieved with �� islands of � individuals is shown in Figure ���� It is
not as good as that previously achieved in the same conditions for the transceiver siting
problem with the Vosges��� data set� It is however similar with an e�ciency of ��) on
�� workstations� instead of an e�ciency of ��) with Vosges��� �cf� Figure �����a���

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Sp
ee

d-
up

Number of PEs

IGA: 40 islands of 4 individuals
Theoretical

Experimental

Figure ���� Speed�up achieved with �� islands of � individuals�

On one hand� the size of an individual is larger for the G� instance of the graph
coloring problem than for the Vosges��� instance of the transceiver siting problem� When
an individual migrates� about ��� integer values must be sent in the �rst case instead of
��� boolean values in the latter� On the other hand� the computational load is � times
lower in the �rst case than in the latter�� The similarity of the speed�ups in these two
cases can thus be explained by the increase of both communication and the computational
loads �i�e�� the ratio tcommunication

tcomputation
remains almost constant��

When p PEs are used� with p � ���� ���� there must be at least one PE that handles
� of the �� islands while the other PEs handle a single island� The speed�up should
thus be constant within this range since the execution time is bounded by the PE�s�
with the most islands� Yet� it can be noticed in Figure ��� that the speed�up achieved
with �� PEs is higher than that achieved with p � ���� ��� PEs ����� instead of ������
This can be explained by the ratio of communication time over computation time in this
particular case� If �� PEs are used� only one PE handles � islands� The other PEs have

�According to experimental measurements�

��� PARALLEL ISLAND�BASED ANT SYSTEMS ���

twice less computation to perform and since no synchronization barrier is required by
the algorithm they can communicate before this PE ends its computation� The apparent
communication load� limited to that of one PE� is thus negligible� The speed�up achieved
is then very close to the theoretical speed�up that does not consider communications
�cf� Equation ������

S
th�	 p � ��

�� islands
���� !

��

��
��

� ! ��� �����

This phenomenon is not observed when many PEs handle � islands�

	�� Parallel island�based ant systems

The parallel island�based ant system is based on the ant system of Algorithm ��� There
exist several ways to encode the trails � ���� ���� For example� it can be stored in a
n � n matrix M where M�v� v�� is proportional to the quality of the coloring obtained
by giving the same color to the adjacent vertices v and v�� The simplest encoding of �
was chosen here� since the performance of the algorithm is not a priority� � is simply a
q�n matrix M � where M ��v� c� is proportional to the quality of the coloring obtained by
giving the color c to the vertex v�

The constructive method of the AS is based on the greedy�like Algorithm ��� It can
be noted that if 	 ! � and � ! � then Algorithm �� becomes Algorithm ��� In this
context� the notion of transition �as de�ned in ������ is not considered� the probability
pv�c of assigning color c to vertex v depends neither on the last colored vertex� nor on the
color used to color it� The probability pv�c replaces thus the transition probability pi�j as
de�ned in Equation ����

The speed�ups achieved with a colony of �� ants� and with a colony of ��� ants� are
shown in Figure ����a�� They are equivalent up to �� PEs but the speed�up achieved
with ��� ants continues to increase up to �� PEs while that achieved with �� ants does
not� After reaching their maximum values� both speed�ups remain constant and �nally
decrease slowly� When the ��� ants are distributed on � islands� the speed�up increases
regularly up to �� PEs and then remains constant with a gentle increasing slope �see
Figure ����b���

The speed�up achieved here with ��� ants on one colony� and on � islands� are very
di	erent from those achieved in the same conditions for the transceiver siting problem
with the Vosges��� data set �cf� Figures �����a� and �����b��� The di	erence can be
explained by two phenomena� First� the size of the individuals and the size of the trails are
larger than for the previous problem instance� when an individual is exchanged between
two PEs� ��� integer values must be sent instead of ��� boolean values" and when a trail
matrix is exchanged between a worker and a farmer PE� �� � ��� ! ����� real values
must be sent instead of ���� Second� the computational load is ��� times lower for the G�

��� CHAPTER
� GRAPH COLORING APPLICATION

Algorithm ��
�� coloring graph ant system ��
�� initialize the trails ���
�� cycle � �
�� repeat
�� cycle � cycle $�
�� initialize %�
�� for each ant of the colony
�� �� color G with at most q colors using trails � and visibility
 ��
�� for each vertex v of G
�� for each color c
��� if 	v� � N �v� such that color�v�� ! c
��� then
v�c � �
��� else
v�c � ���number of colors not assigned in N �v��

��� pv�c�t� � �
v�c�t�����v�c�t���P
d�
��q��� �
v�d�t��

���v�d�t���

��� assign color c to vertex v with probability pv�c
��� evaluate nbconflicts the number of con
icts in G
��� for each vertex v of G
��� %�v�color�v� � %�v�color�v� $ ���nbconflicts�
��� �� update the trails ��
��� ��t$ n� � � � ��t� $ %��t� t $ n�
��� until cycle � max cycle

��� PARALLEL ISLAND�BASED ANT SYSTEMS ���

instance than for the Vosges��� instance�� The early stop of increasing of the speed�up
shown in Figure ����a� is thus due to a low computational load and a high communication
load �i�e�� a larger ratio tcommunication

tcomputation
��

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

AS Theoretical: 160 ants
Theoretical: 80 ants

Experimental: 160 ants
Experimental: 80 ants

�a�

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80
Sp

ee
d-

up

Number of PEs

IAS: 4 islands of 40 ants
Theoretical

Experimental

�b�

Figure ����
a
 Speed�ups achieved with an ant colony of �� and ��� ants�
b
 Speed�ups
achieved for ��� ants distributed on � islands�

The speed�up achieved with ��� ants distributed on �� islands is shown in Fig�
ure ����a�� When the number p of PEs is lower than the number I of islands� the speed�up
�ts its theoretical graph� When p � I� the speed�up remains good� and it reaches an
e�ciency of ��) on �� PEs� Its shape is similar to that obtained in the same conditions
for the transceiver siting problem with the Vosges��� data set �cf� Figure �����a��� The
reasons of this similarity are the same than those given page ��� for the IGA� Indeed�
in this case the parallelization of the IAS compares with that of the IGA� it is mainly
realized by the distribution of low partitioned islands� In opposition� the parallelization
of the AS and the IAS with � islands is rather based on the partitioning of few islands�
The speed�up shown in Figure ����a� is thus less sensitive to the di	erences between
problem instances than the speed�ups shown in Figure ����

It can be observed� once more� that the speed�up becomes higher when there is a low
number of PEs with a high computational load �e�g�� for p � ���� ��� and for p ! ����

The speed�up achieved with � islands of one ant is shown in Figure ����b�� It is very
similar to the theoretical speed�up computed by Equation ����� and it shows an e�ciency
of ��) on � PEs� An equivalent e�ciency can be observed on most of the other exper�
imental speed�up graphs with only a low number of PEs �e�g�� � or �� PEs�� Moreover�
when the number of islands is equal to the number of PEs the speed�up is usually good

�According to experimental measurements�

��� CHAPTER
� GRAPH COLORING APPLICATION

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Sp
ee

d-
up

Number of PEs

IAS: 40 islands of 4 ants
Theoretical

Experimental

�a�

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Sp
ee

d-
up

Number of PEs

IAS: 8 islands of 1 ant
Theoretical

Experimental

�b�

Figure ����
a
 Speed�ups achieved for ��� ants distributed on �� islands�
b
 Speed�up
achieved with � islands of one ant�

even when the island size is small �this was previously observed in Figure ������ This
observation was veri�ed by another experiment with �� islands of one ant� A very good
e�ciency of ��) was achieved when the �� islands were distributed on �� PEs�

	�	 Parallel island�based genetic ant algorithm

The speed�ups achieved with ��� individuals distributed on � and �� islands are shown in
Figure ���� The e�ciency is rather poor �respectively ��) and ��)� but the speed�ups
shown in Figure ��� have the same properties than those commented about Figure ����
for the transceiver siting problem�

This rather bad e�ciency is not surprising since the e�ciency of the parallel ant sys�
tem is also low� Indeed� as said in the previous chapter� the speed�up of this hybrid EA
is bounded by the speed�up of its ant island� Since the latter stops to increase when
few ants are distributed on each PE� the shape of this speed�up is coherent with that of
Figure ����a��

An AS generation is �� times slower to be processed than a GA generation with
graph G�� The computation of the only ant island represents thus now ��) of the total
computation� hence a maximum theoretical speed�up of � on �� PEs �against ���� with
the Vosges��� data set of the transceiver siting problem�� This explains why� between
� and �� PEs� the speed�up seems to slowly increase in Figure ����b� whereas it looks
absolutely constant in Figure �����b��

This con�rms that the IGAA should be parallelized by partitioning the ant island

�	� QUALITY OF THE RESULTS ���

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

Sp
ee

d-
up

Number of PEs

IGAA: 4 islands of 40 individuals

�a�

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

Sp
ee

d-
up

Number of PEs

IGAA: 40 islands of 4 individuals

�b�

Figure ���� Speed�ups achieved with ��� ants distributed on � islands
a
 and �� is�
lands
b
�

without distributing the others� hence a level of parallelization L��I � ����L�

�h
n

p��

i�
instead of L������L�

�h
n

p�I��

i�
� The speed�up would then be that of the AS with one

colony of n ants �as mentioned in Section �����

This experiment shows the limit of the parallelization rules based exclusively on EA
ingredients when heterogeneous meta�heuristics are hybridized� It shows that� in that
case� the parallelization rules should take a new factor into account� the ratio of com�
putational load between the di	erent meta�heuristics� This ratio might depend on the
characteristics of the problem instances that must be solved �e�g�� the time to evaluate
the �tness of an individual�� It is thus very di�cult to estimate it without experimental
measurements�

	�
 Quality of the results

	�
�� Results

Table ����b� compares the quality of the results obtained with the di	erent algorithms
discussed in this thesis� The quality of the results is estimated by the number of con
icts
that remains in the returned solutions� the less con
icts� the better the solution�

The graphs are those described in Section ���� Table ����a� summarizes their charac�
teristics� For each of these graphs noted Gx� an optimal coloring with qx colors is known�
qx is given to the algorithm as the maximum number of colors that can be used in order
to color a graph Gx�

��� CHAPTER
� GRAPH COLORING APPLICATION

G� G� G� G� G�
Number of colors given � �� �� �� �
Number of vertices ��� ��� ��� ��� ��
Number of edges ���� ����� ���� ���� ���

�a�

Number of con�icts G� G� G� G� G�
Random ���� ��� ��� ��� ��
Greedy ���� ��� ��� � �
� population ���� ��� ��� ��� �

IGA � islands ��� ��� ��� ��� �
�� islands ��� ��� ��� ��� �

� population ��� ��� �� � �
IAS � islands ��� ��� �� � �

�� islands ��� ��� �� � �
IGAA � islands ��� ��� �� � �

�� islands ��� ��� �� � �

�b�

Table ����
a
 Characteristics of the �ve graphs that were solved by �� di�erent algorithms
during the experiments� Their complete description is given in Section ����
b
 Compar�
ison of the quality
estimated by the number of con�icts
 of the results found�

Random is an algorithm that creates ��� random solutions and returns the best� and
Greedy is Algorithm ��� The other algorithms are the EAs previously tackled in this
thesis� The random and greedy�like algorithms are used to provide a basis of discussion
since they give a good idea of the di�culty of each instance�

Each result shown in Table ��� is the best that was obtained after � runs with di	erent
random seeds �except for Greedy� that is a deterministic algorithm��

	�
�� Summary

It can be noted that when Random works better than Greedy �i�e�� with the three �rst
graphs� the EAs work even better� Inversely� when Greedy �nds the optimal solution #
without con
icts # then Random shows poor performance� In this latter case� the EAs
are deceiving� They are usually close to the optimal but they do not �nd it� It can thus
be stated that EAs are not well suited for solving such instances� Indeed� their execution
time is in the order of magnitude of a few hours while that of Greedy is in the order of

�	� QUALITY OF THE RESULTS ���

magnitude of the second�

The quality of the solutions increases� or remains constant� when the number of islands
increases �except in one case� when G� is treated by the IGA with �� islands�� The use
of island�based EAs seems thus to be a good choice in general� Among the island�based
EAs tried� the IAS always performs better than the IGA� That is not surprising since
the AS performs already much better than the GA on the graph coloring problem� The
IGAA performs also better than the IGA� but not always as well as the IAS� No bene�t
of the hybridization can thus be noticed here� In conclusion� the best algorithm that was
tested to solve the graph coloring problem is the IAS with �� islands� but only when
Random returns better solutions than Greedy�

��� CHAPTER
� GRAPH COLORING APPLICATION

Begin at the beginning and go on
till you come to the end" then stop�

Alice�s adventures in Wonderland� �����
Lewis Carrol
���������

Chapter 	

Conclusion

�� Summary

First� this thesis gives an overview of NP�hard combinatorial optimization problems� and
of heuristic approaches usually applied to solve them� It then focuses on the evolutionary
approach that is based on the evolution of a set of candidates� in opposition to traditional
heuristics that construct or modify a single candidate� The aim of evolutionary algorithms
�EAs� is to avoid the attraction of local optima and to explore a wide range of the search
space� Classical evolutionary algorithms �EAs� are enumerated and described in the
second chapter� From the observation of the miscellaneous vocabulary used to describe
EAs in the literature� a unifying taxonomy is then proposed� the main ingredients of EAs
are identi�ed and used to build a classi�cation tool named TEA�� The way existing EAs
can be characterized using the TEA is illustrated at the end of the third chapter�

Since EAs are highly time and memory consuming� and since they can treat huge
instances of problems� the question of their parallelization is then tackled in the remain�
der� The study focuses on MIMD�DM� architectures� mainly because of their increasing
availability and their
exibility� Parallel computing concepts are introduced in the second
chapter� They are used in the fourth chapter to set parallelization rules based on the
TEA description of EAs� An original notation of the granularity of parallel EAs �by level�
is proposed� It makes it possible to compare the granularity of parallel EAs�

The main features of EAs and their in
uence on the parallelization of EAs are now
better identi�ed� Taking advantage of this study� an object�oriented software library was
designed in order to test the parallelization rules and to facilitate the implementation of
parallel EAs� This library� named APPEAL� ful�lled its original aims and also proved the
correctness of its object�oriented model� The parallelization rules were experimentally
validated for an island�based genetic algorithm �IGA�� an ant system �AS�� and an island�
based ant system �IAS�� An island�based hybrid genetic ant algorithm �named IGAA�

�TEA stands for Table of Evolutionary Algorithms�
�MIMD�DM stands for Multiple Instruction stream� Multiple Data stream� Distributed Memory�

���

��� CHAPTER 	� CONCLUSION

was used to show the limits of these rules� Two test problems were chosen for the study�
a realistic problem related to the choice of transceiver sites in mobile phone networks�
and a classical graph coloring problem�

The bene�t of speeding up the execution of EAs by parallelizing them is highly e	ec�
tive� The speed�ups achieved with the programs written with APPEAL meet the demand�
and one of them is now used as the main optimization engine in the STORMS� project�
This program� named ParaGene� is a parallel island�based genetic algorithm that makes
it possible to optimize transceiver siting in interactive mode� as required by telecommu�
nication operators�

Even if the goal is not primarily to study the e�ciency of EAs� but rather to study
the best way to parallelize them� some observations were made on the quality of their
results� Island�based EAs with many islands gave better solutions than standard EAs�
This phenomenon was experimentally observed on the two test problems with a GA�
an AS� and an IGAA� In some cases� the quality of the solutions was not signi�cantly
improved but it was never degraded by the use of islands�

By comparing the results obtained using EAs with the results obtained using simple
greedy�like algorithms� three cases were observed�

� Results obtained with EAs are much better in two cases� when solving particular
instances of the transceiver siting problem� and when solving some di�cult instances
of the graph coloring problem�

� Results obtained with greedy�like algorithms are much worse for solving some
�easy� instances of the graph coloring problem�

� Results are of the same order of magnitude for the transceivers siting problem�
when solving realistic cases�

It was observed that the di�culty of a problem instance is not directly dependent on its
size� Instances of problems should thus always be solved �rst by a traditional heuristic
that is simple to implement and fast to execute �such as a greedy�like algorithm�� It
should then only conditionally be solved by an EA� provided the result is unsatisfactory�

Every time an EA is used advisedly to solve huge instances� its inherent need for
important computation power sums up with the large data to be processed� The require�
ment of e�cient parallel versions of EAs in this case justi�es the e	ort put in the present
work to parallelize EAs�

In the case of heterogeneous hybrid high�level co�evolution �e�g�� an island�based EA
with di	erent algorithm on di	erent islands�� the parallelization critically depends on
the ratio of computational load between the di	erent algorithms involved in the hybrid
algorithm� If this ratio is not known in advance� poor results are likely to be obtained
�this was illustrated by the poor e�ciency achieved by the parallel IGAA in the last
chapters��

�STORMS stands for Software Tools for the Optimization of Resources in Mobile Systems�

	��� MAJOR CONTRIBUTIONS OF THIS WORK ���

�� Major contributions of this work

My major contributions can be summarized in six points� First� I proposed an original
taxonomy for evolutionary algorithms associated to classi�cation tool with potential for
additional facilities �the TEA�� Second� based on this taxonomy� I also proposed a new
way to tackle parallel EAs by dissociating their parallel design from algorithmic choices�
that is� to distinguish between the search for e�ciency in terms of speed�up and in terms
of quality of solutions� Third� I developed APPEAL� an object�oriented library dedicated
to parallel evolutionary algorithms with a clear design that di	erentiates three categories
of classes� algorithm� problem and candidate encoding classes� Fourth� I measured speed�
ups on a large network of workstations �up to �� Sparc��� with di	erent programs applied
on two di	erent combinatorial optimization problems� Fifth� I studied these speed�ups
when the number of islands �or of individuals� is not a multiple� or a divisor� of the
number of PEs used concurrently� Finally� I successfully applied a part of this work to
the European project STORMS�

�� Perspectives

The number of experiments presented in this thesis had to be chosen carefully for the
sake of clarity and coherence� It is however very easy to wonder about the results that
would have been obtained if this or that hybrid algorithm had been tested� if a given
parameter had been tuned di	erently� if several heterogeneous archipelagi had been han�
dled� or if di	erent computers had been used� Moreover� the number of combinations of
algorithms� hybridization and problems that could be experimented is enormous� and it
is not realistic to experiment with all these combinations� However� this section proposes
several hints about studies that could be complementary to the present work�

Speed�up measurements are very sensitive to the load of computer networks� The
results of the present work only apply for a network almost free of any other user� Two
interesting complements to this work could be� �rst� a study of asynchronous EAs" and
second� a di	erent approach considering individuals as autonomous agents that control
their evolution with their own rules� The e�ciency of these parallel EAs could be consid�
ered from two orthogonal viewpoints� the speed�up achieved on busy computer networks�
and the possible loss in terms of quality of solution�

The extension of APPEAL and the checking of its compatibility with other C�� com�
pilers is planned� The results of the experiments exposed in the two last chapters will
serve as a basis for future tests on other parallel platforms� It could also be possible to
apply its object�oriented model to another language �e�g�� Ei	el ������

The conclusions about the two test problems could be generalized to other applica�
tions� and thus this work could be reused in a totally di	erent framework �theoretical or

��� CHAPTER 	� CONCLUSION

industrial��

Some complementary work could also be done by improving the parallelization rules�
They are currently rather qualitative and could be enhanced with quantitative condi�
tional rules based on the type of problems treated� on the time to evaluate the �tness of
a candidate �with respect to the size of an instance�� and the technological characteristics
of the parallel computer�s� �e�g�� processor speed� link bandwidth� etc���

Finally� even if the content of the TEA is still somewhat questionable� this new tax�
onomy can still be re�ned in the future� It could serve as a sound basis for reasoning
about EAs� hence generating a new perception of EAs in the research community�

A good notation has a subtlety and
suggestiveness which at times make it

almost seem like a live teacher�
The World of Mathematics� �����

Bertrand Russell
���������

Appendix A

Glossary and acronyms

A�� Glossary of usual evolutionary terms

Evolution The evolution is the iterative process that is performed by an evolutionary
algorithm on a population�

Fitness The �tness value is a real number that evaluates the quality of the candidate
modeled by an individual� It is computed by a �tness function that is unique for a
population�

Generation A generation is equivalent to one iteration step on an evolutionary algo�
rithm on a population�

Genotype A genotype is the encoding part of an individual� For example� it can be a
bit string� a vector of real numbers� a matrix of characters� etc� It encodes the candidate
�or the part of the candidate� modeled by an individual�

Individual An individual is composed of a genotype and a phenotype� It models a
candidate �or a part of a candidate� for a problem� It is always associated to a �tness
value that represents the quality of the potential solution it models�

Phenotype A phenotype is the external vision that one has of an individual� For
example� it can be a color� a list of valued properties� etc� It is in fact the understandable
transcription of the genotype of the individual�

Population A population is a set of individuals�

���

��� APPENDIX A� GLOSSARY AND ACRONYMS

A�� Frequently used acronyms

Acronyms related to evolutionary computation

ACS Ant Colony System
AIGA Asynchronous Island�based Genetic Algorithm
APPEAL Advanced Parallel Population�based Evolutionary Algorithm Library
AS Ant System
EA Evolutionary Algorithm
EC Evolutionary Computation
ES Evolution Strategy
GA Genetic Algorithm
IAS Island�based Ant System
IGA Island�based Genetic Algorithm
IGAA Island�based Genetic Ant Algorithm
PBIL Population�Based Incremental Learning
PGA Parallel Genetic Algorithm
PIGA Parallel Island�based Genetic Algorithm
SC SCatter search
TEA Table of Evolutionary Algorithms

Acronyms related to parallel computing

BSP Bulk�Synchronous Parallel computers
COW Cluster Of Workstations
DM Distributed Memory
MIMD Multiple Instruction stream� Multiple Data stream
MPI Message Passing Interface
NOW Network Of Workstations
PE Processing Element
PRAM Parallel Random Access Memory
PVM Parallel Virtual Machine
SIMD Single Instruction stream� Multiple Data stream
SISD Single Instruction stream� Single Data stream
SPMD Single Program� Multiple Data stream

Acronyms related to telecommunication

BTS Base Transceiver Station
ParaGene Parallel Genetic software for radio network optimization
ParFlow�� Parallel Flow simulation software
STORMS Software Tools for the Optimization of Resources in Mobile Systems
UMTS Universal Mobile Telecommunication System

�Imagine� � � �
Imagine� �����

John Lennon
���������

Appendix B

Demonstrations

Notations

p is the number of PEs
I is the number of islands
n is the number of individuals per islands

B�� Theoretical e�ciency with indivisible islands

De�nitions

Def �� E�p� ! S�p�
p

�Equation ����

Def �� S
th�	 p � I

I islands
�p� ! I

d I
pe �Equation �����

Def �� �x� x � dxe � x$ �

Hypothesis

Hyp�� p� I � N� � p � I �There are more islands than PEs�

Demonstration

Def � and Def �� E
th�	 p � I

I islands
�p� ! I

pd I
pe �B���

Def �� I
p
�
l
I
p

m
� I � p

l
I
p

m
� I

pd I
pe � �

�B���� E
th�	 p � I

I islands
�p� � � �B���

Def ��
l
I
p

m
� I

p
$ �� p

l
I
p

m
� I $ p

Hyp�� p
l
I
p

m
� �I � �

�
� I

pd I
pe

�B���� �
�
� E

th�	 p � I

I islands
�p� �B���

Conclusion

�B��� and �B���� �p � ��� I�� �
�
� E

th�	 p � I

I islands
�p� � � �Equation �����

���

��� APPENDIX B� DEMONSTRATIONS

B�� Theoretical e�ciency with partitioned islands

De�nitions

Def ��� E�p� ! S�p�
p

�Equation ����

Def ��� S
th�	 p � I

I size n islands
�p� ! I�n�

n

b p
I c

� �Equation �����

Def ��� �x� x � dxe
Def ��� �x� bxc � x

Hypothesis

Hyp��� p� I� n � N� � I � n � p � I �There are more PEs than islands�

Demonstration�

Def �� and Def ��� E
th�	 p � I

I size n islands
�p� ! I�n

p

�
n

b p
I c

� �B���

Def ���

p
I

� � p
I
� n

p
I

� n

b p
I c

Def ��� n�I
p
�
�

n

b p
I c
�
� I�n

p

�
n

b p
I c

� � �

�B���� E
th�	 p � I

I size n islands
�p� � � �B���

Let us take 	 !

p
I

�
We have 	 � p

I
� 	 $ �

Hyp ��� p � I � 	 � �
Hyp ��� p � I � n� 	 � n

� � � 	 � n

If 	 ! n
I�n

p

�
n

b p
I c

� ! I�n
p

! � � �
�

�B���

If � � 	 � n� �

�
�

�
� I�n

p

�
n

b p
I c

� � p

I

!
n

p
I

�"
$z %

T

�
� �n

It can be written that n ! 	

n
�

�
$ r with r � N � r � ��� 	� ��

It follows that
� If r ! �
then n

�
!

n
�

�� n
�
$ ���

�
�

n
�

�
�Thanks to D� Kobler for his contribution�

B��� THEORETICAL EFFICIENCY WITH PARTITIONED ISLANDS ���

� If r � ��� 	� ��
then n

�
!

n
�

�
$ r

�
!

n
�

�� � $ r
�
� n

�
�
n

�

�� � $ �
�
� n

�
$ ���

�
�
n

�

�
and thus we have always n

�
$ ���

�
�
n

�

�
�

We have thus T � �	 $ ��

n
�

�
� �	 $ ��

	
n
�
$ ���

�

�
! n$ 	 $ n��

�
�

Let us show that n$ 	 $ n��
�
� �n in order to prove that T � �n�

It comes to show that 	 $ n��
�
� n�

Let us take F �	� ! 	 $ n��
�

We have F ��	� ! �� n��
��

�
�

if 	 � p
n� �� F ��	� � �� F �	� decreases

if 	 � p
n� �� F ��	� � �� F �	� increases

So� for 	 � f�� � � � � n� �g the maximum values of F �	� are reached at the bounds�
Since F ��� ! n and F �n� �� ! n� we conclude that �	 � ��� n� ��� F �	� � n�
It follows that T � n $ 	$ n��

�
� �n�

and thus �
�
� E

th�	 p � I

I size n islands
�p� �B���

Conclusion

�B���
�B���
�B���

&'
(� �p � �I� I � n�� �

�
� E

th�	 p � I

I size n islands
�p� � � �Equation �����

��� APPENDIX B� DEMONSTRATIONS

List of Algorithms

� Standard genetic algorithm �GA� ��
� Evolution strategy �ES� ��
� Ant system�AS� ��
� PBIL algorithm ��
� Scatter search �SC� ��
� Adaptative memory ��
� Island�based genetic algorithm �IGA� ��
� Island�based genetic ant algorithm �IGAA� ��
� Island�based ant system �IAS� ��
�� Asynchronous island�based evolutionary algorithm �AIEA� � � � � � � � � � � � � � � � � � ��
�� Greedy�like algorithm for the transceiver siting problem �Greedy� � � � � � � � � � ��
�� Coloring graph greedy�like algorithm ���
�� Coloring graph ant system ���

���

��� LIST OF ALGORITHMS

Bibliography

��� G� M� Amdahl� Validity of the single�processor approach to achieving large�scale
computing capabilities� In AFIPS Conference Proceedings� number ��� pages ���#
���� AFIPS Press� �����

��� Th� B.ack� U� Hammel� M� Sch.utz� H��P� Schwefel� and J� Sprave� Applications of
evolutionary algorithms at the center for applied systems analysis� In J��A� D
esid
eri
et al�� editor� Computational Methods in Applied Sciences���� pages ���#���� Wiley�
Chichester� �����

��� Th� B.ack and H��P� Schwefel� An overview of evolutionary algorithms for parameter
optimization� Evolutionary Computation� ���#��� �����

��� L� Baker and J� S� Bradley� Parallel Programming� McGraw�Hill� ����� ISBN
��������������

��� S� Baluja and R� Caruana� Removing the genetics from the standard genetic algo�
rithm� In Proc� ��th International Conference on Machine Learning� pages ��#���
Morgan Kaufmann� �����

��� A� Beck� Greed is �sometimes� not enough� American Mathematics Monthly�
���������#���� �����

��� T� H� Belding� The Distributed Genetic Algorithm Revisited� In L� Eshelman�
editor� Proceeding of the Sixth International Conference on Genetic Algorithms

ICGA
� pages ���#���� Morgan Kaufmann� �����

��� R� Benzi� S� Succi� and M� Vergassola� The Lattice Boltzmann Equation� Theory
and Applications� Physics Reports� ����������#���� �����

��� D� P� Bertsekas and J� N� Tsitsiklis� Parallel and Distributed Computation� Prentice�
Hall� �����

���� B� Bullnheimer� G� Kotsis� and C� Strauss� Parallelization Strategies for the Ant
System� In R� De Leone� A� Murli� P� Pardalos� and G� Toraldo� editors� High
Performance Algorithms and Software in Nonlinear Optimization� volume �� of
Applied Optimization� pages ��#���� Kluwer�Dordrecht� �����

���

��� BIBLIOGRAPHY

���� P� Cal
egari� APPEAL manual� Advanced Parallel Population�based Evolution�
ary Algorithm Library� Technical Report ���� LITH �Computer Science Theory
Laboratory�� EPFL� CH����� Lausanne� Switzerland� August ����� Available at�
http���grip�ep
�ch�APPEAL�

���� P� Cal
egari� G� Coray� A� Hertz� D� Kobler� and P� Kuonen� A Taxonomy of Evolu�
tionary Algorithms in Combinatorial Optimization� Journal of Heuristics� ��������#
���� July ����� A �rst version was published in a technical report ORWP����� at
Swiss Federal Institute of Technology� Lausanne� �����

���� P� Cal
egari� F� Guidec� and P� Kuonen� A Parallel Genetic Approach to Transceiver
Placement Optimisation� In C��A� H
eritier and B� Chopard� editors� Proceedings of
the SIPAR Workshop���� Parallel and Distributed Systems� pages ��#��� October
�����

���� P� Cal
egari� F� Guidec� and P� Kuonen� Urban Radio Network Planning for Mobile
Phones� EPFL Supercomputing Review� ���#��� November �����

���� P� Cal
egari� F� Guidec� P� Kuonen� B� Chamaret� S� Josselin� D� Wagner� and
M� Pizarosso� Radio Network Planning with Combinatorial Optimization Algo�
rithms� In Chr� Christensen� editor� Proceedings of the �st ACTS Mobile Telecom�
munications Summit ��� volume �� pages ���#���� November �����

���� P� Cal
egari� F� Guidec� P� Kuonen� and D� Kobler� Parallel Island�Based Genetic
Algorithm for Radio Network Design� Journal of Parallel and Distributed Comput�
ing
JPDC
� special issue on Parallel Evolutionary Computing� Academic Press�
��������#��� November �����

���� P� Cal
egari� F� Guidec� P� Kuonen� and F� Nielsen� Combinatorial optimization
algorithms for radio network planning� Theoretical Computer Science
TCS
� �����
�in print��

���� P� Cal
egari� P� Kuonen� F� Guidec� and D� Wagner� A Genetic Approach to Radio
Network Optimization for Mobile Systems� In IEEE� editor� Proceedings of the
IEEE ��th Vehicular Technology Conference
VTC
� volume � of Technology in
Motion� pages ���#���� May �����

���� E� Cant�u�Paz� A Summary of Research on Parallel Genetic Algorithms� Technical
report� Illinois Genetic Algorithms Laboratory� �����

���� E� Cant
u�Paz and D� E� Goldberg� Predicting speedups of idealized bounding cases
of parallel genetic algorithms� In Th� B.ack� editor� Proceedings of the seventh In�
ternational Conference on Genetic Algorithms� pages ���#���� Morgan Kaufmann�
�����

BIBLIOGRAPHY ���

���� V� Chv
atal� A greedy heuristic for the set�covering problem� Mathemathical Oper�
ations Research� �����#���� �����

���� B� Codenotti and M� Leoncini� Introduction to Parallel Processing� Addison�Wesley�
�����

���� J� P� Cohoon� S� U� Hedges� W� N� Martin� and D� Richards� Punctuated Equilibria�
A Parallel Genetic Algorithm� In Proceedings of the second International Conference
on Genetic Algorithms� pages ���#���� Lawrence Erlbaum� �����

���� D� Coleman� P� Arnold� S� Bodo	� C� Dollin� H� Gilchrist� F� Hayes� and P� Jere�
maes� Object�Oriented Development � The Fusion Method� Prentice Hall Object�
Oriented Series� Englewood Cli	s� NJ� ����� ISBN ��������������

���� A� Colorni� M� Dorigo� and V� Maniezzo� Distributed optimization by ant colonies�
In Proceedings of ECAL�� � European Conference on Arti�cial Life�� Elsevier Pub�
lishing� �����

���� A� Colorni� M� Dorigo� and V� Maniezzo� Distributed Optimization by Ant Colonies�
In MIT Press� editor� First European Conference on Arti�cial Life� pages ���#����
Bradford Books� �����

���� A� Colorni� M� Dorigo� and V� Maniezzo� An investigation of some properties of an
ant algorithm� In R� M.anner and B� Manderick� editors� Second European Confer�
ence on Parallel Problem Solving from Nature� pages ���#���� Elsevier Publishing�
Brussels� �����

���� A� Colorni� M� Dorigo� and V� Maniezzo� An investigation of some properties
of an ant algorithm� In Proceedings of the Parallel Problem Solving from Nature
Conference
PPSN ��
� Elsevier Publishing� �����

���� J� O� Coplien� Advanced C�� Programming Style and Idioms� Addison Wesley�
�����

���� M� Cosnard and D� Trystram� Parallel Algorithms and Architectures� International
Thomson Computer Press� �����

���� D� Costa and A� Hertz� Ants can colour graphs� Journal of the Operational Research
Society� ��������#���� �����

���� D� Costa� A� Hertz� and O� Dubuis� Embedding a Sequential Procedure Within an
Evolutionary Algorithm for Coloring Problems in Graphs� Journal of Heuristics�
�����#���� �����

���� L� Davis� Handbook of Genetic Algorithms� Van Nostrand Reinhold� NY� �����

��� BIBLIOGRAPHY

���� M� Dorigo and L� M� Gambardella� Ant colony system� A cooperative learning
approach to the traveling salesman problem� IEEE Transactions on Evolutionary
Computation� �������#��� �����

���� R��C� Duh and M� F.urer� Approximation of k�set cover by semi�local optimization�
In Proceedings of the ��th Annual ACM Symposium on Theory Computation� pages
���#���� �����

���� U� Feige� A Threshold of logn for Approximating Set Cover� In Proceedings of the
��th ACM Symposium on Theory of Computing� �����

���� M� J� Flynn� Some computer organizations and their e	ectiveness� IEEE Transac�
tions on Computers� C�������#���� September �����

���� L� J� Fogel� A� J� Owens� and M� J� Walsh� Arti�cial Intelligence through Simulated
Evolution� Wiley� New York� �����

���� P� Galinier and J� Hao� Hybrid Evolutionary Algorithm for Graph Coloring� Tech�
nical report� EERIE� Nimes� France� April �����

���� M� R� Garey and D� S� Johnson� Computers and Intractability� a Guide to the
Theory of NP�completeness� Freeman and Co�� �����

���� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam�
PVM� Parallel Virtual Machine� A Users� Guide and Tutorial for Networked Par�
allel Computing� Scienti�c and Engineering Computation� MIT Press� �����

���� F� Glover� Heuristics for Integer Programming Using Surrogate Constraints� Deci�
sion Sciences� �������#���� �����

���� F� Glover� Genetic Algorithms and Scatter Search� Unsuspected Potentials� Statis�
tics and Computing� �������#���� �����

���� F� Glover and M� Laguna� Tabu Search� Kluwer Academic Publishers� Norwell�
MA� �����

���� D� E� Goldberg� Genetics algorithms in search� optimization� and machine learning�
Addison�Wesley Publishing Company� Inc�� �����

���� D� E� Goldberg� H� Kargupta� J� Horn� and E� Cantu�Paz� Critical Deme Size For
Serial And Parallel Genetic Algorithms� Technical Report ������ Illinois Genetic
Algorithms Laboratory �IlliGAL�� January �����

���� J� J� Grefenstette� Parallel Adaptive Algorithms for Function Optimization� Tech�
nical Report CS������� Vanderbilt University� Nashville� �����

BIBLIOGRAPHY ���

���� F� Guidec� P� Cal
egari� and P� Kuonen� Object�Oriented Parallel Software for Radio
Wave Propagation Simulation in Urban Environment� In C� Lengauer� M� Griebl�
and S� Gorlatch� editors� EuroPar��� Parallel Processing
Third International Eu�
roPar Conference� Passau� Germany� August ����� Proceedings
� volume ���� of
Lecture Notes in Computer Science� pages ���#���� Springer� September �����

���� F� Guidec� P� Cal
egari� and P� Kuonen� Parallel Irregular Software for Wave Propa�
gation Simulation� In Hertzberger and Sloot� editors� High�Performance Computing
and Networking
HPCN Europe���� Vienna
� Lecture Notes in Computer Science�
volume ���� of Lecture Notes in Computer Science� pages ��#��� Springer Verlag�
April �����

���� F� Guidec� P� Cal
egari� and P� Kuonen� Parallel irregular software for wave prop�
agation simulation� Future Generation Computer Systems
FGCS
� N�H� Elsevier�
�����������#���� March ����� ISSN ��������X�

���� F� Guidec� P� Cal
egari� P� Kuonen� and M� Pahud� ParFlow$$� a parallel irregular
radio wave propagation simulation code� Technical report ������� Swiss Federal
institute of Technology �EPFL�� Computer Science Department� January �����

���� F� Guidec� P� Cal
egari� P� Kuonen� and M� Pahud� Object�Oriented Parallel Soft�
ware for Parallel Radio Wave Propagation Simulation in Urban Environment� Com�
puters and Arti�cal Intelligence� ���� ����� �in print��

���� F� Guidec� P� Kuonen� and P� Cal
egari� ParFlow$$� a C$$ Parallel Application
for Wave Propagation Simulation� SPEEDUP� Proceedings of the ��th SPEEDUP
Meeting� ����������#��� December �����

���� F� Guidec� P� Kuonen� and P� Cal
egari� Radio Wave Propagation Simulation on the
Cray T�D� In E�H� D�Hollander� G�R� Joubert� F�J� Peters� and U� Trottenberg�
editors� Parallel Computing� Fundamentals� Applications and New Directions� vol�
ume �� of Advances in parallel computing� pages ���#���� Elsevier Science B�V��
����� ISBN ��������������

���� A� Gupta and V� Kumar� Analysing scalability of parallel algorithms and architec�
tures� Journal of Parallel and Distributed Computing� ���������#���� �����

���� S� Gupta and S� Khuller� Greedy strikes back� Improved facility location problems�
In Proceedings of the �th ACM�SIAM Symposium on Discrete Algorithms� pages
���#���� �����

���� J� L� Gustafson� Reevaluating Amdahl�s law� Communication of the ACM� ������
May �����

���� J� Heitk.otter and D� Beasley� The Hitch�Hiker�s Guide to Evolution�
ary Computation �FAQ for comp�ai�genetic�� ���������� Available at
ftp���ftp�krl�caltech�edu�pub�EC�Welcome�html�

��� BIBLIOGRAPHY

���� M� Henricson and E� Nyquist� Programming in C�� � Rules and Recommenda�
tions� Technical report� Ellemtel Telecommunications Systems Laboratories� Swe�
den� April �����

���� R� W� Hockney and C� R� Jesshope� Parallel Computers� Adam Hilger Ltd� Bristol�
����� ISBN ��������������

���� W� J� R� Hoe	er� The Transmission�Line Matrix Method� Theory and Applica�
tions� IEEE Transactions on Microwave Theory and Techniques� �����������#����
October �����

���� F� Ho	meister� Scalable Parallelism by Evolutionary Algorithms� In M� Grauer and
D� B� Pressmar �Eds��� editors� Parallel Computing and Mathematical Optimization�
number ��� in Lecture Notes in Economics and Mathematical Systems� pages ���#
���� Springer�Verlag� �����

���� J� Holland� Adaptation in natural and arti�cial systems� University of Michigan
Press� �����

���� Ian Joyner� C�� A critique of C�� and Programming and Language
Trends of the ����s ��rd Edition�� ����� Page created in February �����
http���www�progsoc�uts�edu�au� geldridg�cpp�cppcv��html�

���� R� M� Karp� Reductibility among combinatorial problems� In R� E� Miller and
J� W� Thatcher� editors� Complexity of Computer Computations� pages ��#����
New York� ����� Plenum Press�

���� M� J� Kearns� The Computational Complexity Problems� MIT Press� �����

���� D� Kobler� Mod eles biologiques en optimisation combinatoire et mod eles
math	ematiques en g	en	etique� PhD thesis� number ����� Swiss Federal Institute
of Technology �EPFL�� Switzerland� July �����

���� D� Kobler� P� Cal
egari� G� Coray� A� Hertz� and P� Kuonen� A Taxonomy of
Evolutionary Algorithms in Combinatorial Optimization� In EPFL� editor� Program
and abstracts of the ��th International Symposium on Mathematical Programming�
Lausanne� Switzerland� page ���� August �����

���� J� R� Koza� Genetic Programming� On the Programming of Computers by Means of
Natural Selection� Complex Adaptive Systems� The MIT Press� Cambridge� �����

���� P� Kunst and D� Snyers� Emergent Colonization and Graph Partitioning� In Pro�
ceedings of the Third International Conference of Adaptive Behavior� pages ���#
���� MIT Press� �����

BIBLIOGRAPHY ���

���� P� Kuonen� La Programmation Parall ele Asynchrone et son Application aux
Probl emes Combinatoires� PhD thesis� number ����� Swiss Federal Institute of
Technology �EPFL�� Switzerland� �����

���� P� Kuonen� F� Guidec� and P� Cal
egari� Multilevel Parallelism applied to the op�
timization of mobile networks� In A� Tentner� editor� Proceedings of the High�
Performance Computing
HPC���
� pages ���#���� Society for Computer Simula�
tion International� April ����� ISBN ��������������

���� F� T� Leighton� Journal of Research of the National Bureau of Standards� ������#
���� �����

���� D� Levine� A Parallel Genetic Algorithm for the Set Partitioning Problem� PhD
thesis� Illinois Institute of Technology� Department of Computer Science� �����

���� P� O� Luthi� B� Chopard� and J��F� Wagen� Wave Propagation in Urban Micro�cells�
a Massively Parallel Approach using the TLM Method� In Proceeding of PARA����
Workshop on Applied Parallel Scienti�c Computing� Copenhagen� August �����
Also in COST ��� TD���� ���

���� B� Meyer� Object�Oriented Software Construction
�nd Edition
� Prentice Hall�
���� ��rst edition ������ ISBN ��������������

���� S� Micali and V� Vazirani� An O�jejpjV j� algorithm for maximum matching in
general graphs� In Proceedings of the ��st IEEE Annual Symposium on the Foun�
dations of Computer Science� pages ��#��� �����

���� P� Moscato� On Evolution� Search� Optimization� Genetic Algorithms and Mar�
tial Arts� Towards Memetic Algorithms� Technical report� California Institute of
Technology� Pasadena� CA ������ USA� �����

���� P� Moscato� Memetic algorithms� home page� ����� Page created in February �����
http���www�ing�unlp�edu�ar�cetad�mos�memetic home�html�

���� S� N.aher and C� Uhrig� The LEDA User Manual Version R ����c� �����

���� M� Pahud� Une M	ethode de Pr	ediction de Performance pour les Programmes Par�
all eles Irr	eguliers� PhD thesis� number ����� Swiss Federal Institute of Technology
�EPFL�� Switzerland� December �����

���� C� H� Papadimitriou and K� Steiglitz� Combinatorial Optimization� Algorithms and
complexity� Prentice�Hall� �����

���� V� Paschos� A survey on approximately optimal solution to some covering and
packing problems� ACM Computing Surveys� ���������#���� June �����

��� BIBLIOGRAPHY

���� C� C� Pettey and M� R� Leuze� A Theoretical Investigation of a Parallel Genetic
Algorithm� In Proceeding of the Third International Conference on Genetic Algo�
rithms� pages ���#���� �����

���� M� J� Quinn� Designing E�cient Algorithms for Parallel Computers� Computer
Science Series� McGraw�Hill� ����� ISBN ��������������

���� I� Rechenberg� Cybernetic solution path of an experimental problem� Technical
Report Library translation ����� Royal Air Force Establishment� Farnborough�
Hants�� UK� �����

���� Y� Rochat and E� D� Taillard� Probabilistic diversi�cation and intensi�cation in
local search for vehicule routing� Journal of Heuristics� �����#���� �����

���� H��P� Schwefel� Numerische Optierung von Computer�Modellen mittels der Evolu�
tionsstrategie� Volume �� of Interdisciplinary Systems research� Birkh.auser� Basel�
�����

���� P� Slav
,k� Improved Performance of the Greedy Algorithm for Partial Cover� In�
formation Processing Letters� ���������#���� December �����

���� P� Slav
,k� A Tight Analysis of the Greedy Algorithm for Set Cover� Journal of
Algorithms� ���������#���� November �����

���� M� Snir� S� W� Otto� S� Huss�Lederman� D� W� Walker� and J� Dongarra� MPI� The
Complete Reference� Scienti�c and Engineering Computation Series� MIT Press�
����� ISBN��������������

���� W� M� Spears and K� DeJong� An analysis of multi�point crossover� In G� J� E�
Rawlins� editor� Foundations of Genetic Algorithms� pages ���#���� Morgan Kauf�
mann� �����

���� P� Spiessens and B� Manderick� A Massively Parallel Genetic Algorithm� In L� B�
Booker �eds�� R� K� Belew� editor� Proceedings of the �th International Conference
on Genetic Algorithms� pages ���#���� Morgan Kaufmann� �����

���� T� Starkweather� D� Whitley� and K� Mathias� Optimization using distributed
genetic algorithms� In R� M.anner and H��P� Schwefel �Eds��� editors� Proceedings of
the First International Conference on Parallel Problem Solving from Nature� pages
���#���� Springer� �����

���� B� Stroustrup� The C�� Programming Language
�rd Edition
� Addison Wesley�
���� ��rst edition ������ ISBN ��������������

���� G� Syswerda� Uniform crossover in genetic algorithms� In J� D� Scha	er� editor�
Proceeding of the Third International Conference on Genetic Algorithms� pages �#��
Morgan Kaufmann� �����

BIBLIOGRAPHY ���

���� E��G� Talbi� A Taxonomy of Hybrid Metaheuristics� Technical Report AS�����
Laboratoire d�Informatique Fondamentale de Lille� LIFL� USTL� ����� Villeneuve
d�Ascq� France� May ����� To be published in Journal of Combinatorial Optimiza�
tion� Kluwer Academic Publishers� Boston�

���� R� Tanese� Parallel Genetic Algorithms for a Hypercube� In Proceeding of the
Second International Conference on Genetic Algorithms� pages ���#���� �����

���� R� Tanese� Distributed genetic algorithms� In J� D� Scha	er� editor� Proceedings of
the Third International Conference on Genetic Algorithms� pages ���#���� George
Mason University� June ����� Morgan Kaufmann�

����� M� Trick� Graph Coloring Instances� ����� Page created in October �����
http���mat�gsia�cmu�edu�COLOR�instances�html and color�html�

����� L� G� Valiant� Bulk�Synchronous Parallel Computers� In M� Reeve and S� E� Zenith�
editors� Parallel Processing and Arti�cial Intelligence� Chichester� UK� ����� Wiley�

����� D� Whitley� A genetic algorithm tutorial� Technical Report CS�������� Colorado
State University� �����

This report can be referenced as�
P� Cal
egari� Parallelization of population�based evolutionary algorithms for combinatorial
optimization problems� PhD thesis� number ����� Swiss Federal Institute of Technology
�EPFL�� Lausanne� Switzerland� September �����

��� BIBLIOGRAPHY

Index

adaptative memory� ��
agent� ��
age of Universe� ��
algorithm

de�nition� ��� ��
Amdahl�s law� ��
ant

trail� ��� ��
visibility� ��� ��

ant colony system� ��� ��
ant system� ��

TEA description� ��
application� ��� ���
parallel� ��

APPEAL� ��� ��
implementation� ��
object model� ��#��

application
graph coloring� ���
transceiver siting� ��

archipelago� ��
AS� see ant system
asynchronous model� ��� ��

bottleneck� ��
BSP� ��� ��
BTS� ��

cell� ��
chromatic number� ���
classi�cation

parallel computer architecture� ��
parallel EAs� ��

coarse�grain parallelism� ��
combinatorial optimization� �

classes of problems� �

classical methods� �
constructive approach� �
sequential approach� �

combinatorial problem� �
communication load� ��
constructive approach� �
contention� ��� ��� ��
COW� ��
crossover

one�point� ��� ��

darwinism algorithm� ���
decision problem� �
deme� ��
dependency� ��
diversi�cation� ��

EA� see evolutionary algorithm
e�ciency� ��� ��
emergent colonization algorithm� ��
encoding� ��
entity� ��� ��� ��
��net� ���
ES� see evolution strategy
evolution� �� ��� ��� ���
evolutionary algorithm� �

classi�cation� ��
glossary� ���
ingredients� ��#��

evolutionary programming� ��
evolution strategy� ��
exploitation� ��
exploration� ��

farmer�worker model� ��
�ne�grain parallelism� ��

���

��� INDEX

�tness� �� ���
frequency allocation� ���
Fusion method� ��

GA� see genetic algorithm
generation� ���
generational replacement evol�� ��� ��
genetic algorithm� ��

TEA description� ��
application� ��� ���
parallel� ��

genetic ant algorithm� ��
TEA description� ��
motivation� ��

genetic programming� ��
genotype� �� ���
global parallelization� ��
granularity� ��� ��
graph coloring� ���

instances� ���
greedy�like algorithm� �� ��

application� ��� ���

heuristic� �
history

of the element� ��
of the individual� ��
of the population� ��� ��
of the set� ��

hitting set� ��
hybrid algorithm� ��� ��

application� ���� ���
genetic ant algorithm� ��� ��
parallel� ��
parallelization� ��

IAS� ��� ��
application� ��� ���
parallel� ��

IGA� ��
application� ��� ���
parallel� ��

IGAA� ��
application� ���� ���

parallel� ��
improving algorithm� ��� ��
individual� �� ���
ingredient� see evolutionary algorithm
integer part notation� ��
intensi�cation� ��
island�based genetic ant algorithm� ��
island model� ��� ��

TEA description� ��
asynchronous� ��
description level� ��
genetic algorithm� ��� ��
phenomenon� ��
structured space� ��

L�� ��� ��
LE O PA RD project� vii
level

in the TEA� ��
of parallelization� ��#��

libraries
APPEAL� ��#��
existing� ��
LEDA� ��
MPI� PVM� ��

load balancing� ��
local search� �� ��

master�slave model� ��
memetic algorithm� ��
meta�heuristic� ��
migration� ��

rate�time�scale� ��
MIMD� ��� ��� ��

neighborhood� �� ��
network con�guration� ��
noise� ��� ��
NOW� ��
NP�complete� �
NP�hard� �

object�oriented model� ��#��
operator $� ��

INDEX ���

operator ��� ��� ��
optimal solution� �
optimization problem� �

ParaGene� ���
parallelization� ��

criteria� ��
level� ��#��

parallelization rules
in
uence of the TEA ingredients� ��
in
uence of the TEA levels� ��

parallel algorithm
de�nition� ��
models� ��

parallel computer architecture� ��
parallel computing� ��

constraints� ��
parallel EA

e�cient� ��
experiments� ��#���� ���#���
parallelization� ��
why � ��

ParFlow��� ��
partitioning model� ��
PBIL� ��

TEA description� ��
PGA� ��
phenotype� �� ���
pheromone� ��
pipeline model� ��
population� �� ��� ���
population�based incremental learning� ��
PRAM� ��� ��

radio network planning� ��
radio wave propagation simulation� ��
randomization� ��� ��
recognition problem� �

scalability� ��
scatter search� ��� ��

TEA description� ��
selection pressure� ��� ��
set cover problem� ��

set system� ��
SIMD� ��� ��� ��� ��
speed�up� ��� ��

experiments� ��#���� ���#���
pipeline� ��

steady state evolution� ��� ��
STORMS project� vii� ��� ���
structured space� ��� ��� ��

phenomenon� ��
sub�population� ��� ��
super�linear� ��

tabu search� �
task mapping� ��� ��
taxonomy� ��

hybrid meta�heuristic� ��� ��
TEA

basic� ��
complete� ��
examples of use� ��
motivation� ��
parallelization analysis� ��

topology� ��� ��� ��� ��
transceiver siting� ��

instances� ��
traveling salesman problem� �
TSP� �

weighted set system� ��� ��

��� INDEX

Curriculum Vitae

�� In English
Born in ����� Patrice Cal	egari spends � years at the �	Ecole normale sup	erieure de Lyon�
where he obtains a M�Sc� of theoretical computer science and an engineer diploma of
computer science and modeling in ����
University of Lyon I� France
� During that
period� he pursued training periods on parallel algorithms of reaction�di�usion at the
University of Geneva
Switzerland
� on a pattern recognition software at the University
of Helsinki
Finland
� and on hand�writing recognition software in Paris
France
 for the
SLIGOS company�

In ����� after achieving his obligatory military service� he becomes assistant at the
Swiss Federal Institute of Technology in the computer science theory laboratory
LITH

where he participates actively to the European project STORMS
object�oriented design
of the global software� realization of libraries and parallel software� etc�
� In ����� he
starts his PhD� thesis in the same laboratory where he also teaches
parallel computing�
C�� language
� The list of his publications includes ���� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ����

His external activities are� B/W and color artistic photography
landscape� portrait�
etc�
� French and International gastronomy� discovery of nature and of di�erent cultures
through numerous trips� trek� ski� sub�diving and sailing�

�� En fran�cais
N	e en ����� Patrice Cal	egari passe � ans a l� 	Ecole normale sup	erieure de Lyon o u il ob�
tient un DEA d�informatique th	eorique et un Magist ere d�informatique et mod	elisation en
����
dipl!omes de l�Universit	e Claude Bernard Lyon I� France
� Pendant cette p	eriode�
il e�ectue des stages sur des algorithmes parall eles de r	eaction�di�usion a l�Universit	e
de Gen eve
Suisse
� sur un logiciel de reconnaissance de formes a l�Universit	e d�Helsinki

Finlande
� et sur la reconnaissance de l�	ecriture manuscrite a Paris
France
 dans la
soci	et	e de service informatique SLIGOS�

En ����� apr es avoir e�ectu	e son service militaire obligatoire� il entre comme assistant
au Laboratoire d�Informatique Th	eorique de l� 	Ecole Polytechnique F	ed	erale de Lausanne
o u il participe activement au projet europ	een STORMS
conception orient	ee objet de
l�application globale� r	ealisation de librairies et d�applications parall eles� etc�
� En ����� il
d	ebute son travail de th ese dans ce m!eme laboratoire o u il fait 	egalement de l�enseignement

parall	elisme� langage C��
� La liste de ses publications comprend ���� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

Ses activit	es externes sont � la photographie artistique N/B et couleur
paysage�
portrait� etc�
� la gastronomie fran"caise et internationale� la d	ecouverte de la nature et
de di�	erentes cultures a travers de nombreux voyages� la randonn	ee� le ski� la plong	ee
sous�marine et la voile�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

